These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32486206)

  • 1. Comparison of Laser-Synthetized Nanographene-Based Electrodes for Flexible Supercapacitors.
    Romero FJ; Gerardo D; Romero R; Ortiz-Gomez I; Salinas-Castillo A; Moraila-Martinez CL; Rodriguez N; Morales DP
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.
    Aytug T; Rager MS; Higgins W; Brown FG; Veith GM; Rouleau CM; Wang H; Hood ZD; Mahurin SM; Mayes RT; Joshi PC; Kuruganti T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11008-11017. PubMed ID: 29528215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors.
    Hu H; Guo Y; Zhao J
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freestanding Laser-Assisted Reduced Graphene Oxide Microribbon Textile Electrode Fabricated on a Liquid Surface for Supercapacitors and Breath Sensors.
    Shi HH; Jang S; Naguib HE
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27183-27191. PubMed ID: 31276359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roll-to-Roll Laser-Printed Graphene-Graphitic Carbon Electrodes for High-Performance Supercapacitors.
    Kang S; Lim K; Park H; Park JB; Park SC; Cho SP; Kang K; Hong BH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1033-1038. PubMed ID: 29200258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes.
    Aval LF; Ghoranneviss M; Pour GB
    Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.
    Tian H; Chen HY; Ren TL; Li C; Xue QT; Mohammad MA; Wu C; Yang Y; Wong HS
    Nano Lett; 2014 Jun; 14(6):3214-9. PubMed ID: 24801736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Hierarchically Mesoporous ZnCo
    Moon IK; Yoon S; Oh J
    Chemistry; 2017 Jan; 23(3):597-604. PubMed ID: 27805794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-Induced Reduction of Graphene Oxide by Intensity-Modulated Line Beam for Supercapacitor Applications.
    Tran TX; Choi H; Che CH; Sul JH; Kim IG; Lee SM; Kim JH; In JB
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39777-39784. PubMed ID: 30371054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and Optimizing Capacitance Performance in Reduced Graphene-Oxide Based Supercapacitors.
    Gadipelli S; Guo J; Li Z; Howard CA; Liang Y; Zhang H; Shearing PR; Brett DJL
    Small Methods; 2023 Jun; 7(6):e2201557. PubMed ID: 36895068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imperceptible Supercapacitors with High Area-Specific Capacitance.
    Ge J; Zhu M; Eisner E; Yin Y; Dong H; Karnaushenko DD; Karnaushenko D; Zhu F; Ma L; Schmidt OG
    Small; 2021 Jun; 17(24):e2101704. PubMed ID: 33977641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laser-Induced Graphene.
    Song W; Zhu J; Gan B; Zhao S; Wang H; Li C; Wang J
    Small; 2018 Jan; 14(1):. PubMed ID: 29148212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolithic and Flexible ZnS/SnO
    Zhang C; Xie Y; Deng H; Tumlin T; Zhang C; Su JW; Yu P; Lin J
    Small; 2017 May; 13(18):. PubMed ID: 28296060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of reduced graphene oxide with freeze drying tuned interfacial structure on performance of transparent and flexible supercapacitors.
    He Y; Zhang X; Zhong Y; Li X; Wu L; Liu H; Gou H; Wang G
    J Colloid Interface Sci; 2019 Oct; 554():650-657. PubMed ID: 31351335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
    Dang YQ; Ren SZ; Liu G; Cai J; Zhang Y; Qiu J
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible micro-supercapacitors assembled via chemically reduced graphene oxide films assisted by a laser printer.
    Zhong M; Zhang F; Yu Y; Zhang J; Shen W; Guo S
    Nanotechnology; 2018 Oct; 29(43):43LT01. PubMed ID: 30084387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors.
    Fu XY; Zhang YY; Ma CJ; Jiang HB
    Opt Lett; 2022 Mar; 47(6):1502-1505. PubMed ID: 35290349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.