BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32486216)

  • 21. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study on the role of articular cartilage soft tissue constitutive form in models of whole knee biomechanics.
    Marchi BC; Arruda EM
    Biomech Model Mechanobiol; 2017 Feb; 16(1):117-138. PubMed ID: 27387306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Urethral lumen occlusion by artificial sphincteric devices: a computational biomechanics approach.
    Natali AN; Carniel EL; Fontanella CG; Todros S; De Benedictis GM; Cerruto MA; Artibani W
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1439-1446. PubMed ID: 28343260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical behavior of pericardial human tissue: a constitutive formulation.
    Pavan PG; Pachera P; Tiengo C; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):926-34. PubMed ID: 25224743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of estimating regional mechanical properties of cerebral aneurysms in vivo.
    Balocco S; Camara O; Vivas E; Sola T; Guimaraens L; Gratama van Andel HA; Majoie CB; Pozo JM; Bijnens BH; Frangi AF
    Med Phys; 2010 Apr; 37(4):1689-706. PubMed ID: 20443490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical model for healthy and injured ankle ligaments.
    Forestiero A; Carniel EL; Fontanella CG; Natali AN
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):289-295. PubMed ID: 28220401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the biomechanical behaviour of gastrointestinal regions adopting an experimental and computational approach.
    Carniel EL; Rubini A; Frigo A; Natali AN
    Comput Methods Programs Biomed; 2014; 113(1):338-45. PubMed ID: 24252470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.
    Erdemir A; Hunter PJ; Holzapfel GA; Loew LM; Middleton J; Jacobs CR; Nithiarasu P; Löhner R; Wei G; Winkelstein BA; Barocas VH; Guilak F; Ku JP; Hicks JL; Delp SL; Sacks M; Weiss JA; Ateshian GA; Maas SA; McCulloch AD; Peng GCY
    J Biomech Eng; 2018 Feb; 140(2):0247011-02470111. PubMed ID: 29247253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The state of head injury biomechanics: past, present, and future: part 1.
    Goldsmith W
    Crit Rev Biomed Eng; 2001; 29(5-6):441-600. PubMed ID: 12434929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of biomechanical response of Hoffa's fat pad and comparative characterization.
    Fontanella CG; Carniel EL; Frigo A; Macchi V; Porzionato A; Sarasin G; Rossato M; De Caro R; Natali AN
    J Mech Behav Biomed Mater; 2017 Mar; 67():1-9. PubMed ID: 27936429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical assessment of arterial dissection in health and disease: Advancements and challenges.
    Tong J; Cheng Y; Holzapfel GA
    J Biomech; 2016 Aug; 49(12):2366-73. PubMed ID: 26948576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.
    Chanda A; Unnikrishnan V; Flynn Z; Lackey K
    Proc Inst Mech Eng H; 2017 Jan; 231(1):80-91. PubMed ID: 28097936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted computational probabilistic corroboration of experimental knee wear simulator: the importance of accounting for variability.
    Strickland MA; Dressler MR; Render T; Browne M; Taylor M
    Med Eng Phys; 2011 Apr; 33(3):295-301. PubMed ID: 21075032
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.