BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32486238)

  • 21. Myosin heavy chain isoform transitions in canine skeletal muscles during postnatal growth.
    Strbenc M; Smerdu V; Pogacnik A; Fazarinc G
    J Anat; 2006 Aug; 209(2):149-63. PubMed ID: 16879596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of spaceflight on myosin heavy-chain content, fibre morphology and succinate dehydrogenase activity in rat diaphragm.
    Hansen G; Martinuk KJ; Bell GJ; MacLean IM; Martin TP; Putman CT
    Pflugers Arch; 2004 May; 448(2):239-47. PubMed ID: 14985980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation.
    Zhan WZ; Miyata H; Prakash YS; Sieck GC
    J Appl Physiol (1985); 1997 Apr; 82(4):1145-53. PubMed ID: 9104851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes.
    Acevedo LM; Rivero JL
    Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aging reduces succinate dehydrogenase activity in rat type IIx/IIb diaphragm muscle fibers.
    Fogarty MJ; Marin Mathieu N; Mantilla CB; Sieck GC
    J Appl Physiol (1985); 2020 Jan; 128(1):70-77. PubMed ID: 31774353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations.
    Stål P
    Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein and mRNA levels of the myosin heavy chain isoforms Ibeta, IIa, IIx and IIb in type I and type II fibre-predominant rat skeletal muscles in response to chronic alcohol feeding.
    Reilly ME; McKoy G; Mantle D; Peters TJ; Goldspink G; Preedy VR
    J Muscle Res Cell Motil; 2000; 21(8):763-73. PubMed ID: 11392558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional difference in muscle fiber type and glucose uptake of mouse gastrocnemius at rest.
    Hayasaki H; Shimada M; Kanbara K; Watanabe M
    Cell Mol Biol (Noisy-le-grand); 2001; 47 Online Pub():OL135-40. PubMed ID: 11936859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation between myofibrillar ATPase activity and myosin heavy chain composition in equine skeletal muscle and the influence of training.
    Rivero JL; Talmadge RJ; Edgerton VR
    Anat Rec; 1996 Oct; 246(2):195-207. PubMed ID: 8888961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling.
    Shi H; Scheffler JM; Pleitner JM; Zeng C; Park S; Hannon KM; Grant AL; Gerrard DE
    FASEB J; 2008 Aug; 22(8):2990-3000. PubMed ID: 18417546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The homoeobox gene SIX1 alters myosin heavy chain isoform expression in mouse skeletal muscle.
    Hetzler KL; Collins BC; Shanely RA; Sue H; Kostek MC
    Acta Physiol (Oxf); 2014 Feb; 210(2):415-28. PubMed ID: 24102895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short Communication: Supplementation with calcium butyrate causes an increase in the percentage of oxidative fibers in equine gluteus medius muscle.
    Busse NI; Gonzalez ML; Wagner AL; Johnson SE
    J Anim Sci; 2022 Aug; 100(8):. PubMed ID: 35908781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fiber type-specific differences in glucose uptake by single fibers from skeletal muscles of 9- and 25-month-old rats.
    Mackrell JG; Arias EB; Cartee GD
    J Gerontol A Biol Sci Med Sci; 2012 Dec; 67(12):1286-94. PubMed ID: 23042591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perineal muscles and their innervation: metabolic and functional significance of the motor unit.
    Ishihara A; Hori A; Roy RR; Oishi Y; Talmadge RJ; Ohira Y; Kobayashi S; Edgerton VR
    Acta Anat (Basel); 1997; 159(2-3):156-66. PubMed ID: 9575366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers.
    Feng HZ; Chen M; Weinstein LS; Jin JP
    J Appl Physiol (1985); 2011 Sep; 111(3):834-43. PubMed ID: 21680879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extraocular Muscle Reveals Selective Vulnerability of Type IIB Fibers to Respiratory Chain Defects Induced by Mitochondrial DNA Alterations.
    Oexner RR; Pla-Martín D; Paß T; Wiesen MHJ; Zentis P; Schauss A; Baris OR; Kimoloi S; Wiesner RJ
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):14. PubMed ID: 33057669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow- and fast-twitch hindlimb skeletal muscle phenotypes 12 wk after ⅚ nephrectomy in Wistar rats of both sexes.
    Acevedo LM; Peralta-Ramírez A; López I; Chamizo VE; Pineda C; Rodríguez-Ortiz ME; Rodríguez M; Aguilera-Tejero E; Rivero JL
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F638-47. PubMed ID: 26246512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level?
    Qaisar R; Renaud G; Morine K; Barton ER; Sweeney HL; Larsson L
    FASEB J; 2012 Mar; 26(3):1077-85. PubMed ID: 22125316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid fiber alterations in exercising seniors suggest contribution to fast-to-slow muscle fiber shift.
    Moreillon M; Conde Alonso S; Broskey NT; Greggio C; Besson C; Rousson V; Amati F
    J Cachexia Sarcopenia Muscle; 2019 Jun; 10(3):687-695. PubMed ID: 30907516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.