These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 32486253)
1. Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins. Jarosiewicz M; Miłowska K; Krokosz A; Bukowska B Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486253 [TBL] [Abstract][Full Text] [Related]
2. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Jarosiewicz M; Michałowicz J; Bukowska B Chemosphere; 2019 Jan; 215():404-412. PubMed ID: 30336317 [TBL] [Abstract][Full Text] [Related]
3. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. Jarosiewicz M; Krokosz A; Marczak A; Bukowska B Chemosphere; 2019 Jul; 227():93-99. PubMed ID: 30986606 [TBL] [Abstract][Full Text] [Related]
4. Tetrabromobisphenol A, terabromobisphenol S and other bromophenolic flame retardants cause cytotoxic effects and induce oxidative stress in human peripheral blood mononuclear cells (in vitro study). Włuka A; Woźniak A; Woźniak E; Michałowicz J Chemosphere; 2020 Dec; 261():127705. PubMed ID: 32731020 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes. Jarosiewicz M; Duchnowicz P; Włuka A; Bukowska B Food Chem Toxicol; 2017 Nov; 109(Pt 1):264-271. PubMed ID: 28893619 [TBL] [Abstract][Full Text] [Related]
6. An In Vitro Comparative Study of the Effects of Tetrabromobisphenol A and Tetrabromobisphenol S on Human Erythrocyte Membranes-Changes in ATP Level, Perturbations in Membrane Fluidity, Alterations in Conformational State and Damage to Proteins. Jarosiewicz M; Duchnowicz P; Jarosiewicz P; Huras B; Bukowska B Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502352 [TBL] [Abstract][Full Text] [Related]
8. Migration of phenolic brominated flame retardants from contaminated food contact articles into food simulants and foods. Paseiro-Cerrato R; De Jager L; Begley TH Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Mar; 38(3):464-475. PubMed ID: 33493090 [TBL] [Abstract][Full Text] [Related]
9. Genotoxic Mechanism of Action of TBBPA, TBBPS and Selected Bromophenols in Human Peripheral Blood Mononuclear Cells. Barańska A; Woźniak A; Mokra K; Michałowicz J Front Immunol; 2022; 13():869741. PubMed ID: 35493487 [TBL] [Abstract][Full Text] [Related]
10. Exploring the interactions of decabrominateddiphenyl ether and tetrabromobisphenol A with human serum albumin. Wang YQ; Zhang HM; Cao J Environ Toxicol Pharmacol; 2014 Sep; 38(2):595-606. PubMed ID: 25194328 [TBL] [Abstract][Full Text] [Related]
11. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures. Ortuño N; Moltó J; Conesa JA; Font R Environ Pollut; 2014 Aug; 191():31-7. PubMed ID: 24792882 [TBL] [Abstract][Full Text] [Related]
12. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008. Kajiwara N; Noma Y; Takigami H J Hazard Mater; 2011 Sep; 192(3):1250-9. PubMed ID: 21783321 [TBL] [Abstract][Full Text] [Related]
13. Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry. Liu L; Liu A; Zhang Q; Shi J; He B; Yun Z; Jiang G J Chromatogr A; 2017 May; 1497():81-86. PubMed ID: 28372837 [TBL] [Abstract][Full Text] [Related]
14. Vapor pressure of three brominated flame retardants determined by using the Knudsen effusion method. Fu J; Suuberg EM Environ Toxicol Chem; 2012 Mar; 31(3):574-8. PubMed ID: 22213441 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a quantitative UHPLC-MS/MS method for selected brominated flame retardants in food. Malysheva SV; Goscinny S; Malarvannan G; Poma G; Andjelkovic M; Voorspoels S; Covaci A; Van Loco J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Feb; 35(2):292-304. PubMed ID: 29087783 [TBL] [Abstract][Full Text] [Related]
16. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure. Besis A; Christia C; Poma G; Covaci A; Samara C Environ Pollut; 2017 Nov; 230():871-881. PubMed ID: 28735244 [TBL] [Abstract][Full Text] [Related]
17. Atomic-scale investigation of the interactions between tetrabromobisphenol A, tetrabromobisphenol S and bovine trypsin by spectroscopies and molecular dynamics simulations. Ding K; Zhang H; Wang H; Lv X; Pan L; Zhang W; Zhuang S J Hazard Mater; 2015 Dec; 299():486-94. PubMed ID: 26252992 [TBL] [Abstract][Full Text] [Related]
18. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether. Shi YJ; Xu XB; Zheng XQ; Lu YL Comp Biochem Physiol C Toxicol Pharmacol; 2015; 174-175():32-8. PubMed ID: 26117064 [TBL] [Abstract][Full Text] [Related]
19. Methods for the determination of phenolic brominated flame retardants, and by-products, formulation intermediates and decomposition products of brominated flame retardants in water. López P; Brandsma SA; Leonards PE; De Boer J J Chromatogr A; 2009 Jan; 1216(3):334-45. PubMed ID: 18762297 [TBL] [Abstract][Full Text] [Related]
20. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Alaee M; Arias P; Sjödin A; Bergman A Environ Int; 2003 Sep; 29(6):683-9. PubMed ID: 12850087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]