BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 32486345)

  • 21. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases.
    Siasos G; Tousoulis D; Kioufis S; Oikonomou E; Siasou Z; Limperi M; Papavassiliou AG; Stefanadis C
    Curr Top Med Chem; 2012; 12(10):1132-48. PubMed ID: 22519444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular imaging of matrix metalloproteinases in atherosclerotic plaques.
    Lenglet S; Thomas A; Chaurand P; Galan K; Mach F; Montecucco F
    Thromb Haemost; 2012 Mar; 107(3):409-16. PubMed ID: 22274652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rosuvastatin inhibits MMP-2 expression and limits the progression of atherosclerosis in LDLR-deficient mice.
    Guo H; Shi Y; Liu L; Sun A; Xu F; Chi J
    Arch Med Res; 2009 Jul; 40(5):345-51. PubMed ID: 19766896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The role of matrix metalloproteinases in the pathogenesis of diabetes mellitus and progression of diabetes retinopathy].
    Naduk-Kik J; Hrabec E
    Postepy Hig Med Dosw (Online); 2008 Sep; 62():442-50. PubMed ID: 18772849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation and involvement of matrix metalloproteinases in vascular diseases.
    Amin M; Pushpakumar S; Muradashvili N; Kundu S; Tyagi SC; Sen U
    Front Biosci (Landmark Ed); 2016 Jan; 21(1):89-118. PubMed ID: 26709763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Granulocytes in coronary thrombus evolution after myocardial infarction--time-dependent changes in expression of matrix metalloproteinases.
    Li X; de Boer OJ; Ploegmaker H; Teeling P; Daemen MJ; de Winter RJ; van der Wal AC
    Cardiovasc Pathol; 2016; 25(1):40-6. PubMed ID: 26490693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progression and Characterization of the Accelerated Atherosclerosis in Iliac Artery of New Zealand White Rabbits: Effect of Simvastatin.
    Kanshana JS; Khanna V; Singh V; Jain M; Misra A; Kumar S; Farooqui M; Barthwal MK; Dikshit M
    J Cardiovasc Pharmacol; 2017 May; 69(5):314-325. PubMed ID: 28207427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting of matrix metalloproteinase activation for noninvasive detection of vulnerable atherosclerotic lesions.
    Hartung D; Schäfers M; Fujimoto S; Levkau B; Narula N; Kopka K; Virmani R; Reutelingsperger C; Hofstra L; Kolodgie FD; Petrov A; Narula J
    Eur J Nucl Med Mol Imaging; 2007 Jun; 34 Suppl 1():S1-8. PubMed ID: 17497106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metalloproteinases and advanced glycation end products: coupled navigation in atherosclerotic plaque pathophysiology?
    Furfaro AL; Sanguineti R; Storace D; Monacelli F; Puzzo A; Pronzato MA; Odetti P; Traverso N
    Exp Clin Endocrinol Diabetes; 2012 Nov; 120(10):586-90. PubMed ID: 23073918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation.
    Newby AC
    Matrix Biol; 2015; 44-46():157-66. PubMed ID: 25636537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease.
    Briasoulis A; Tousoulis D; Papageorgiou N; Kampoli AM; Androulakis E; Antoniades C; Tsiamis E; Latsios G; Stefanadis C
    Curr Top Med Chem; 2012; 12(10):1214-21. PubMed ID: 22519451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque.
    Yoon YW; Kwon HM; Hwang KC; Choi EY; Hong BK; Kim D; Kim HS; Cho SH; Song KS; Sangiorgi G
    Atherosclerosis; 2005 May; 180(1):37-44. PubMed ID: 15823273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matrix metalloproteinase inhibition with tetracyclines for the treatment of coronary artery disease.
    Bench TJ; Jeremias A; Brown DL
    Pharmacol Res; 2011 Dec; 64(6):561-6. PubMed ID: 21624471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomarkers of plaque instability.
    Shah PK
    Curr Cardiol Rep; 2014 Dec; 16(12):547. PubMed ID: 25326730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Status of biomarkers for the identification of stable or vulnerable plaques in atherosclerosis.
    Lubrano V; Balzan S
    Clin Sci (Lond); 2021 Aug; 135(16):1981-1997. PubMed ID: 34414413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Matrix metalloproteinases and coronary artery diseases.
    Ikeda U; Shimada K
    Clin Cardiol; 2003 Feb; 26(2):55-9. PubMed ID: 12625594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacological modulation of plaque instability.
    Mezzetti A
    Lupus; 2005; 14(9):769-72. PubMed ID: 16218485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The matrix metalloproteinases as pharmacological target in osteoarthritis: statins may be of therapeutic benefit.
    Wu YS; Hu YY; Yang RF; Wang Z; Wei YY
    Med Hypotheses; 2007; 69(3):557-9. PubMed ID: 17360129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parecoxib improves atherosclerotic plaque stability by suppressing inflammation and inhibiting matrix metalloproteinases production.
    Gong C; Qi Y; Xu Y; Tang X; Liang F; Chen L
    Biomed Pharmacother; 2021 Jun; 138():111423. PubMed ID: 33740522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease.
    Wang X; Khalil RA
    Adv Pharmacol; 2018; 81():241-330. PubMed ID: 29310800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.