These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32486348)

  • 21. Fabrication and characterization of high-temperature microreactors with thin film heater and sensor patterns in silicon nitride tubes.
    Tiggelaar RM; Berenschot JW; de Boer JH; Sanders RG; Gardeniers JG; Oosterbroek RE; van den Berg A; Elwenspoek MC
    Lab Chip; 2005 Mar; 5(3):326-36. PubMed ID: 15726209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A low cost solution for the fabrication of dielectrophoretic microfluidic devices and embedded electrodes.
    Sano MB; Caldwell JL; Davalos RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8384-7. PubMed ID: 22256292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth of C-Axis Textured AlN Films on Vertical Sidewalls of Silicon Microfins.
    Ramezani M; Felmetsger VV; Rudawski NG; Tabrizian R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):753-759. PubMed ID: 32746232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A micromachined silicon multielectrode for multiunit recording.
    Spence AJ; Hoy RR; Isaacson MS
    J Neurosci Methods; 2003 Jun; 126(2):119-26. PubMed ID: 12814836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.
    Yamaner FY; Zhang X; Oralkan Ö
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):972-82. PubMed ID: 25965687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermoelectrical properties of silicon substrates with nanopores synthesized by metal-assisted chemical etching.
    Li Y; Toan NV; Wang Z; Samat KF; Ono T
    Nanotechnology; 2020 Nov; 31(45):455705. PubMed ID: 32365347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices.
    Ma Z; Liu Y; Deng L; Zhang M; Zhang S; Ma J; Song P; Liu Q; Ji A; Yang F; Wang X
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29385759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and modeling of electrode networks for code-division multiplexed resistive pulse sensing in microfluidic devices.
    Liu R; Waheed W; Wang N; Civelekoglu O; Boya M; Chu CH; Sarioglu AF
    Lab Chip; 2017 Jul; 17(15):2650-2666. PubMed ID: 28695944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors.
    Francioso L; De Pascali C; Capone S; Siciliano P
    Nanotechnology; 2012 Mar; 23(9):095302. PubMed ID: 22327322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.
    Bonk SM; Stubbe M; Buehler SM; Tautorat C; Baumann W; Klinkenberg ED; Gimsa J
    Biosensors (Basel); 2015 Jul; 5(3):513-36. PubMed ID: 26263849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 100 electrode intracortical array: structural variability.
    Campbell PK; Jones KE; Normann RA
    Biomed Sci Instrum; 1990; 26():161-5. PubMed ID: 2334761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review.
    Toudeshkchoui MG; Rabiee N; Rabiee M; Bagherzadeh M; Tahriri M; Tayebi L; Hamblin MR
    Biomed Microdevices; 2019 Nov; 21(4):93. PubMed ID: 31686232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A silicon probe with integrated microheaters for thermal marking and monitoring of neural tissue.
    Chen J; Wise KD
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):770-4. PubMed ID: 9254990
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.