These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32486650)

  • 1. Lateral field excited quartz crystal microbalances for biosensing applications.
    Hartz JSR; Emanetoglu NW; Howell C; Vetelino JF
    Biointerphases; 2020 Jun; 15(3):030801. PubMed ID: 32486650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual lateral-field-excited bulk acoustic wave sensor array.
    Winters S; Bernhardt G; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):573-8. PubMed ID: 23475922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lateral field excited liquid acoustic wave sensor.
    Hu Y; French LA; Radecsky K; da Cunha MP; Millard P; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1373-80. PubMed ID: 15600079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lateral-field-excited LiTaO3 high-frequency bulk acoustic wave sensor.
    McCann DF; McGann JM; Parks JM; Frankel DJ; da Cunha MP; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):779-87. PubMed ID: 19406706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Dual Channel Lateral Field Excitation Quartz Crystal Microbalance for Measuring Liquid Electrical Properties.
    Liang J; Kong D; Liu C
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review.
    Huang X; Chen Q; Pan W; Yao Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk Acoustic Wave Characteristics of Pseudo Lateral-Field-Excitation on LGT Single Crystal for Liquid Phase Sensing.
    Xu J; Ma T; Yan L; Wang M; Wang J; Du J; Zhang C
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.
    Uttenthaler E; Schräml M; Mandel J; Drost S
    Biosens Bioelectron; 2001 Dec; 16(9-12):735-43. PubMed ID: 11679251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Mass Sensitivity for Different Electrode Materials Commonly Used in Quartz Crystal Microbalances (QCMs).
    Huang X; Chen Q; Pan W; Hu J; Yao Y
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
    Marx KA
    Biomacromolecules; 2003; 4(5):1099-120. PubMed ID: 12959572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid-like protein nanofibrous membranes as a sensing layer infrastructure for the design of mass-sensitive biosensors.
    Kabay G; Kaleli Can G; Mutlu M
    Biosens Bioelectron; 2017 Nov; 97():285-291. PubMed ID: 28618364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection.
    Yoshimine H; Sasaki K; Furusawa H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-scan measurement of conductance of a quartz crystal microbalance array coupled with resonant markers for biosensing in liquid phase.
    Hsiao HY; Chen RL; Cheng TJ
    Rev Sci Instrum; 2009 Apr; 80(4):044301. PubMed ID: 19405677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel monolithic quartz crystal microbalance gas sensor array.
    Jin X; Huang Y; Mason A; Zeng X
    Anal Chem; 2009 Jan; 81(2):595-603. PubMed ID: 19090744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Thermal Gradient Effects on a Quartz Crystal Microbalance.
    Magni M; Scaccabarozzi D; Palomba E; Zampetti E; Saggin B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of torsional resonators to monitor electroactive biofilms.
    Sievers P; Moß C; Schröder U; Johannsmann D
    Biosens Bioelectron; 2018 Jul; 110():225-232. PubMed ID: 29625330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lateral field excited (yxl)88° LiTaO3 bulk acoustic wave sensor with interdigital electrodes.
    Ma T; Wang J; Du J; Yuan L; Qian Z; Zhang Z; Zhang C
    Ultrasonics; 2013 Mar; 53(3):648-51. PubMed ID: 23339996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh-Frequency, Wireless MEMS QCM Biosensor for Direct, Label-Free Detection of Biomarkers in a Large Amount of Contaminants.
    Noi K; Iwata A; Kato F; Ogi H
    Anal Chem; 2019 Aug; 91(15):9398-9402. PubMed ID: 31264405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMS biosensor for monitoring water toxicity based on quartz crystal microbalance.
    Lee KL; Ng S; Li F; Nordin AN; Voiculescu I
    Biointerphases; 2020 Mar; 15(2):021006. PubMed ID: 32216379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review.
    Ogi H
    Proc Jpn Acad Ser B Phys Biol Sci; 2013; 89(9):401-17. PubMed ID: 24213205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.