These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32486720)

  • 1. Microwave probing of bulk dielectrics using superconducting coplanar resonators in distant-flip-chip geometry.
    Wendel L; Engl VT; Untereiner G; Ebensperger NG; Dressel M; Farag A; Ubl M; Giessen H; Scheffler M
    Rev Sci Instrum; 2020 May; 91(5):054702. PubMed ID: 32486720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing dielectric properties of ultra-thin films using superconducting coplanar microwave resonators.
    Ebensperger NG; Ferdinand B; Koelle D; Kleiner R; Dressel M; Scheffler M
    Rev Sci Instrum; 2019 Nov; 90(11):114701. PubMed ID: 31779383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wideband cryogenic microwave low-noise amplifier.
    Ivanov BI; Volkhin DI; Novikov IL; Pitsun DK; Moskalev DO; Rodionov IA; Il'ichev E; Vostretsov AG
    Beilstein J Nanotechnol; 2020; 11():1484-1491. PubMed ID: 33083196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Rydberg Atoms to Microwave Fields in a Superconducting Coplanar Waveguide Resonator.
    Morgan AA; Hogan SD
    Phys Rev Lett; 2020 May; 124(19):193604. PubMed ID: 32469590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation.
    George RE; Senior J; Saira OP; Pekola JP; de Graaf SE; Lindström T; Pashkin YA
    J Low Temp Phys; 2017; 189(1):60-75. PubMed ID: 32025044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BPZT HBARs for Magnetoelastic Stress Generation at GHz Frequencies.
    Bhaskar UK; Tierno D; Talmelli G; Ciubotaru F; Adelmann C; Devolder T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1284-1290. PubMed ID: 31985417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the microwave to infrared noise photon flux for superconducting quantum systems.
    Danilin S; Barbosa J; Farage M; Zhao Z; Shang X; Burnett J; Ridler N; Li C; Weides M
    EPJ Quantum Technol; 2022; 9(1):1. PubMed ID: 35098151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-resistance measurements using superconducting stripline resonators.
    Hafner D; Dressel M; Scheffler M
    Rev Sci Instrum; 2014 Jan; 85(1):014702. PubMed ID: 24517793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line.
    Bockstiegel C; Wang Y; Vissers MR; Wei LF; Chaudhuri S; Hubmayr J; Gao J
    Appl Phys Lett; 2016 May; 108(22):. PubMed ID: 29332947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics.
    Mikhailovskaya AA; Shchelokova AV; Dobrykh DA; Sushkov IV; Slobozhanyuk AP; Webb A
    J Magn Reson; 2018 Jun; 291():47-52. PubMed ID: 29702361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent Coupling of Two Remote Magnonic Resonators Mediated by Superconducting Circuits.
    Li Y; Yefremenko VG; Lisovenko M; Trevillian C; Polakovic T; Cecil TW; Barry PS; Pearson J; Divan R; Tyberkevych V; Chang CL; Welp U; Kwok WK; Novosad V
    Phys Rev Lett; 2022 Jan; 128(4):047701. PubMed ID: 35148146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative Cooling of a Superconducting Resonator.
    Xu M; Han X; Zou CL; Fu W; Xu Y; Zhong C; Jiang L; Tang HX
    Phys Rev Lett; 2020 Jan; 124(3):033602. PubMed ID: 32031838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave Measurements of Electromagnetic Properties of Materials.
    Krupka J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of device geometry and material properties on dielectric losses in superconducting coplanar-waveguide resonators.
    Lahtinen V; Möttönen M
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32485694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing a dielectric resonator acting as passive sensor through a wireless microwave link.
    Friedt JM; Boudot R; Martin G; Ballandras S
    Rev Sci Instrum; 2014 Sep; 85(9):094704. PubMed ID: 25273751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting Coplanar Waveguide Filters for Submillimeter Wave On-Chip Filterbank Spectrometers.
    Endo A; Yates SJ; Bueno J; Thoen DJ; Murugesan V; Baryshev AM; Klapwijk TM; van der Werf PP; Baselmans JJ
    J Low Temp Phys; 2016; 184():412-417. PubMed ID: 27340291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.