BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32486768)

  • 1. Waves at a fluid-solid interface: Explicit versus implicit formulation of boundary conditions using a discontinuous Galerkin method.
    Shukla K; Carcione JM; Hesthaven JS; L'heureux E
    J Acoust Soc Am; 2020 May; 147(5):3136. PubMed ID: 32486768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room acoustics modelling in the time-domain with the nodal discontinuous Galerkin method.
    Wang H; Sihar I; Pagán Muñoz R; Hornikx M
    J Acoust Soc Am; 2019 Apr; 145(4):2650. PubMed ID: 31046368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations.
    Wang H; Hornikx M
    J Acoust Soc Am; 2020 Apr; 147(4):2534. PubMed ID: 32359313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-analytical discontinuous Galerkin finite element method for the calculation of dispersion properties of guided waves in plates.
    Hebaz SE; Benmeddour F; Moulin E; Assaad J
    J Acoust Soc Am; 2018 Jan; 143(1):460. PubMed ID: 29390733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and nonlinear ultrasound simulations using the discontinuous Galerkin method.
    Kelly JF; Marras S; Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Apr; 143(4):2438. PubMed ID: 29716249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.
    Xia K; Wei GW
    Comput Math Appl; 2014 Oct; 68(7):719-745. PubMed ID: 25309038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIB Galerkin method for elliptic interface problems.
    Xia K; Zhan M; Wei GW
    J Comput Appl Math; 2014 Dec; 272():195-220. PubMed ID: 24999292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Discontinuous Galerkin Spectral Element Schemes for Wave Propagation when the Coefficient Matrices have Jumps.
    Kopriva DA; Gassner GJ; Nordström J
    J Sci Comput; 2021; 88(1):3. PubMed ID: 34776602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
    An N; Yu X; Chen H; Huang C; Liu Z
    J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EXPLICIT LEAST-DEGREE BOUNDARY FILTERS FOR DISCONTINUOUS GALERKIN.
    Nguyen DM; Peters J
    SIAM J Sci Comput; 2017; 39(4):A1741-A1765. PubMed ID: 29081643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I: Linear Problems.
    Abgrall R; Nordström J; Öffner P; Tokareva S
    J Sci Comput; 2020; 85(2):43. PubMed ID: 33184528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On a time domain boundary integral equation formulation for acoustic scattering by rigid bodies in uniform mean flow.
    Hu FQ; Pizzo ME; Nark DM
    J Acoust Soc Am; 2017 Dec; 142(6):3624. PubMed ID: 29289087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unstructured immersed finite element method for nonlinear solid mechanics.
    Rüberg T; Cirak F; García Aznar JM
    Adv Model Simul Eng Sci; 2016; 3(1):22. PubMed ID: 32355635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.
    Huang CH; Lin CC; Ju MS
    Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational coupling of non-matching discretizations across finitely deforming fluid-structure interfaces.
    Kang S; Kwack J; Masud A
    Int J Numer Methods Fluids; 2022 Jun; 94(6):678-718. PubMed ID: 37736534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.
    Cutanda-Henríquez V; Juhl PM
    J Acoust Soc Am; 2013 Nov; 134(5):3409-18. PubMed ID: 24180751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time domain room acoustic simulations using the spectral element method.
    Pind F; Engsig-Karup AP; Jeong CH; Hesthaven JS; Mejling MS; Strømann-Andersen J
    J Acoust Soc Am; 2019 Jun; 145(6):3299. PubMed ID: 31255119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.