These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32486794)

  • 1. Theoretical investigation of the low frequency fundamental mechanism of the objective occlusion effect induced by bone-conducted stimulation.
    Carillo K; Doutres O; Sgard F
    J Acoust Soc Am; 2020 May; 147(5):3476. PubMed ID: 32486794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of the earplug contribution to the low-frequency objective occlusion effect induced by bone-conducted stimulation.
    Carillo K; Doutres O; Sgard F
    J Acoust Soc Am; 2021 Sep; 150(3):2006. PubMed ID: 34598618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the ear canal motion on the impedance boundary conditions in models of the occlusion effect.
    Kersten S; Sgard F; Vorländer M
    J Acoust Soc Am; 2024 Jan; 155(1):56-67. PubMed ID: 38174970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the objective occlusion effect induced by bone-conducted stimulation using a three-dimensional finite-element model of a human head.
    Xu H; Sgard F; Carillo K; Wagnac É; de Guise J
    J Acoust Soc Am; 2021 Nov; 150(5):4018. PubMed ID: 34852629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature microphone probe tube measurements in the external auditory canal.
    Hellstrom PA; Axelsson A
    J Acoust Soc Am; 1993 Feb; 93(2):907-19. PubMed ID: 8445126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model to predict the double hearing protector effect on an in-house acoustic test fixture.
    Luan Y; Sgard F; Nélisse H; Doutres O
    J Acoust Soc Am; 2022 Mar; 151(3):1860. PubMed ID: 35364932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone-conduction hearing and the occlusion effect in otosclerosis and normal controls.
    Tsai V; Ostroff J; Korman M; Chen JM
    Otol Neurotol; 2005 Nov; 26(6):1138-42. PubMed ID: 16272931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S; Stenfelt S; Håkansson B
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of magnetic resonance image registration to estimate displacement in the human earcanal due to the insertion of in-ear devices.
    Benacchio S; Doutres O; Varoquaux A; Wagnac É; Le Troter A; Callot V; Sgard F
    J Acoust Soc Am; 2019 Oct; 146(4):2452. PubMed ID: 31671972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the occlusion effect with bone-conducted stimulation.
    Stenfelt S; Reinfeldt S
    Int J Audiol; 2007 Oct; 46(10):595-608. PubMed ID: 17922349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of ear-canal-reflectance measurement methods in an ear simulator.
    Nørgaard KR; Charaziak KK; Shera CA
    J Acoust Soc Am; 2019 Aug; 146(2):1350. PubMed ID: 31472530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a practical methodology for assessment of the objective occlusion effect induced by earplugs.
    Saint-Gaudens H; Nélisse H; Sgard F; Doutres O
    J Acoust Soc Am; 2022 Jun; 151(6):4086. PubMed ID: 35778167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.