These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32486799)

  • 21. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of noninvasive blood pressure estimation using ultrasound contrast agent microbubbles.
    Li F; Wang L; Fan Y; Li D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):715-26. PubMed ID: 22547282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid.
    Tejedor Sastre MT; Vanhille C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure.
    Chitnis PV; Lee P; Mamou J; Allen JS; Böhmer M; Ketterling JA
    J Appl Phys; 2011 Apr; 109(8):84906-8490610. PubMed ID: 21580800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity
    Shekhar H; Smith NJ; Raymond JL; Holland CK
    Ultrasound Med Biol; 2018 Feb; 44(2):434-446. PubMed ID: 29174045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency response curves for a Mooney-Rivlin hyperelastic microbubble oscillating as a contrast agent in an acoustic pressure field.
    Naude J; Méndez F; Yepes C; Navarrete M; Cienfuegos-Pelaes RF; Moumtadi F
    Ultrasonics; 2020 Sep; 107():106161. PubMed ID: 32402859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 20 years of ultrasound contrast agent modeling.
    Faez T; Emmer M; Kooiman K; Versluis M; van der Steen A; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):7-20. PubMed ID: 23287909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of ultrasound-induced fracture of polymer-shelled ultrasonic contrast agents by correlation analysis.
    Pecorari C; Grishenkov D
    J Acoust Soc Am; 2007 Oct; 122(4):2425-30. PubMed ID: 17902876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating concentration of ultrasound contrast agents with backscatter coefficients: experimental and theoretical aspects.
    Leithem SM; Lavarello RJ; O'Brien WD; Oelze ML
    J Acoust Soc Am; 2012 Mar; 131(3):2295-305. PubMed ID: 22423724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Newtonian rheological model for the interface of microbubble contrast agents.
    Chatterjee D; Sarkar K
    Ultrasound Med Biol; 2003 Dec; 29(12):1749-57. PubMed ID: 14698342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of rupture dynamics to the nonlinear backscatter response from polymer-shelled ultrasound contrast agents.
    Koppolu S; Chitnis PV; Mamou J; Allen JS; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):494-501. PubMed ID: 25935932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical analyses of nonlinear behavior of microbubble contrast agents in ultrasound field and effective parameters.
    Khalili S; Mahdi M
    J Acoust Soc Am; 2018 Apr; 143(4):2111. PubMed ID: 29716268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound Contrast Agent Modeling: A Review.
    Versluis M; Stride E; Lajoinie G; Dollet B; Segers T
    Ultrasound Med Biol; 2020 Sep; 46(9):2117-2144. PubMed ID: 32546411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dependence of ultrasound contrast agents backscatter on acoustic pressure: theory versus experiment.
    Sboros V; MacDonald CA; Pye SD; Moran CM; Gomatam J; McDicken WN
    Ultrasonics; 2002 May; 40(1-8):579-83. PubMed ID: 12160005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasound attenuation by encapsulated microbubbles: time and pressure effects.
    Krasovitski B; Kimmel E; Sapunar M; Adam D
    Ultrasound Med Biol; 2004 Jun; 30(6):793-802. PubMed ID: 15219959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.