These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 32488300)
1. The value of early-stage phenotyping for wheat breeding in the age of genomic selection. Borrenpohl D; Huang M; Olson E; Sneller C Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300 [TBL] [Abstract][Full Text] [Related]
2. Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat. Hoffstetter A; Cabrera A; Huang M; Sneller C G3 (Bethesda); 2016 Sep; 6(9):2919-28. PubMed ID: 27440921 [TBL] [Abstract][Full Text] [Related]
3. An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoria tritici blotch in winter wheat. Herter CP; Ebmeyer E; Kollers S; Korzun V; Miedaner T Theor Appl Genet; 2019 Aug; 132(8):2425-2437. PubMed ID: 31144000 [TBL] [Abstract][Full Text] [Related]
4. Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample. Jiang Y; Schulthess AW; Rodemann B; Ling J; Plieske J; Kollers S; Ebmeyer E; Korzun V; Argillier O; Stiewe G; Ganal MW; Röder MS; Reif JC Theor Appl Genet; 2017 Mar; 130(3):471-482. PubMed ID: 27858103 [TBL] [Abstract][Full Text] [Related]
5. Genomic Selection in Winter Wheat Breeding Using a Recommender Approach. Lozada DN; Carter AH Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32664601 [TBL] [Abstract][Full Text] [Related]
6. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
7. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769 [TBL] [Abstract][Full Text] [Related]
8. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Sun J; Poland JA; Mondal S; Crossa J; Juliana P; Singh RP; Rutkoski JE; Jannink JL; Crespo-Herrera L; Velu G; Huerta-Espino J; Sorrells ME Theor Appl Genet; 2019 Jun; 132(6):1705-1720. PubMed ID: 30778634 [TBL] [Abstract][Full Text] [Related]
9. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection. Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629 [TBL] [Abstract][Full Text] [Related]
10. Gains through selection for grain yield in a winter wheat breeding program. Lozada DN; Ward BP; Carter AH PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696 [TBL] [Abstract][Full Text] [Related]
11. Genomic selection for wheat traits and trait stability. Huang M; Cabrera A; Hoffstetter A; Griffey C; Van Sanford D; Costa J; McKendry A; Chao S; Sneller C Theor Appl Genet; 2016 Sep; 129(9):1697-710. PubMed ID: 27262436 [TBL] [Abstract][Full Text] [Related]
12. Genomic prediction of agronomic traits in wheat using different models and cross-validation designs. Haile TA; Walkowiak S; N'Diaye A; Clarke JM; Hucl PJ; Cuthbert RD; Knox RE; Pozniak CJ Theor Appl Genet; 2021 Jan; 134(1):381-398. PubMed ID: 33135095 [TBL] [Abstract][Full Text] [Related]
13. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Jiang Y; Zhao Y; Rodemann B; Plieske J; Kollers S; Korzun V; Ebmeyer E; Argillier O; Hinze M; Ling J; Röder MS; Ganal MW; Mette MF; Reif JC Heredity (Edinb); 2015 Mar; 114(3):318-26. PubMed ID: 25388142 [TBL] [Abstract][Full Text] [Related]
14. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Bassi FM; Bentley AR; Charmet G; Ortiz R; Crossa J Plant Sci; 2016 Jan; 242():23-36. PubMed ID: 26566822 [TBL] [Abstract][Full Text] [Related]
15. Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality. Lado B; Vázquez D; Quincke M; Silva P; Aguilar I; Gutiérrez L Theor Appl Genet; 2018 Dec; 131(12):2719-2731. PubMed ID: 30232499 [TBL] [Abstract][Full Text] [Related]
16. Sparse testing using genomic prediction improves selection for breeding targets in elite spring wheat. Atanda SA; Govindan V; Singh R; Robbins KR; Crossa J; Bentley AR Theor Appl Genet; 2022 Jun; 135(6):1939-1950. PubMed ID: 35348821 [TBL] [Abstract][Full Text] [Related]
17. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding. Voss-Fels KP; Wei X; Ross EM; Frisch M; Aitken KS; Cooper M; Hayes BJ Theor Appl Genet; 2021 May; 134(5):1493-1511. PubMed ID: 33587151 [TBL] [Abstract][Full Text] [Related]
18. Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program. Battenfield SD; Guzmán C; Gaynor RC; Singh RP; Peña RJ; Dreisigacker S; Fritz AK; Poland JA Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898810 [TBL] [Abstract][Full Text] [Related]
19. Training set determination for genomic selection. Ou JH; Liao CT Theor Appl Genet; 2019 Oct; 132(10):2781-2792. PubMed ID: 31267147 [TBL] [Abstract][Full Text] [Related]
20. Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Longin CF; Mi X; Würschum T Theor Appl Genet; 2015 Jul; 128(7):1297-306. PubMed ID: 25877519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]