These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32488405)

  • 1. Transcriptome Analysis of the Acid Stress Response of Desulfovibrio vulgaris ATCC 7757.
    Yu H; Jiang Z; Lu Y; Yao X; Han C; Ouyang Y; Wang H; Guo C; Ling F; Dang Z
    Curr Microbiol; 2020 Oct; 77(10):2702-2712. PubMed ID: 32488405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,
    Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Quorum Sensing on the Ability of
    Scarascia G; Lehmann R; Machuca LL; Morris C; Cheng KY; Kaksonen A; Hong PY
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris.
    Wu B; Liu F; Zhou A; Li J; Shu L; Kempher ML; Yang X; Ning D; Pan F; Zane GM; Wall JD; Van Nostrand JD; Juneau P; Chen S; Yan Q; Zhou J; He Z
    ISME J; 2020 Nov; 14(11):2862-2876. PubMed ID: 32934357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Effects of Free Nitrous Acid on Desulfovibrio vulgaris: Implications for Sulfide-Induced Corrosion of Concrete.
    Gao SH; Ho JY; Fan L; Richardson DJ; Yuan Z; Bond PL
    Appl Environ Microbiol; 2016 Sep; 82(18):5563-75. PubMed ID: 27371588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria.
    Haveman SA; Greene EA; Voordouw G
    Environ Microbiol; 2005 Sep; 7(9):1461-5. PubMed ID: 16104868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Lee MH; Caffrey SM; Voordouw JK; Voordouw G
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1109-18. PubMed ID: 20437234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in dissimilatory sulfate reduction: From metabolic study to application.
    Qian Z; Tianwei H; Mackey HR; van Loosdrecht MCM; Guanghao C
    Water Res; 2019 Mar; 150():162-181. PubMed ID: 30508713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium.
    Chen Z; Gao SH; Jin M; Sun S; Lu J; Yang P; Bond PL; Yuan Z; Guo J
    Environ Int; 2019 Apr; 125():65-74. PubMed ID: 30710801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium.
    Rajeev L; Chen A; Kazakov AE; Luning EG; Zane GM; Novichkov PS; Wall JD; Mukhopadhyay A
    J Bacteriol; 2015 Nov; 197(21):3400-8. PubMed ID: 26283774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion.
    Clark ME; He Q; He Z; Huang KH; Alm EJ; Wan XF; Hazen TC; Arkin AP; Wall JD; Zhou JZ; Fields MW
    Appl Environ Microbiol; 2006 Aug; 72(8):5578-88. PubMed ID: 16885312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism.
    Plugge CM; Scholten JCM; Culley DE; Nie L; Brockman FJ; Zhang W
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2746-2756. PubMed ID: 20576691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface.
    Zhang W; Culley DE; Nie L; Scholten JC
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):447-57. PubMed ID: 17571259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection.
    Sousa JR; Silveira CM; Fontes P; Roma-Rodrigues C; Fernandes AR; Van Driessche G; Devreese B; Moura I; Moura JJG; Almeida MG
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1455-1469. PubMed ID: 28847524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris.
    He Q; He Z; Joyner DC; Joachimiak M; Price MN; Yang ZK; Yen HC; Hemme CL; Chen W; Fields MM; Stahl DA; Keasling JD; Keller M; Arkin AP; Hazen TC; Wall JD; Zhou J
    ISME J; 2010 Nov; 4(11):1386-97. PubMed ID: 20445634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of molybdate by sulfate-reducing bacteria.
    Biswas KC; Woodards NA; Xu H; Barton LL
    Biometals; 2009 Feb; 22(1):131-9. PubMed ID: 19130259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative proteomic analysis of Desulfovibrio vulgaris Hildenborough in response to the antimicrobial agent free nitrous acid.
    Gao SH; Ho JY; Fan L; Nouwens A; Hoelzle RD; Schulz B; Guo J; Zhou J; Yuan Z; Bond PL
    Sci Total Environ; 2019 Jul; 672():625-633. PubMed ID: 30974354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis.
    Sun R; Zhang L; Wang X; Ou C; Lin N; Xu S; Qiu YY; Jiang F
    Water Res; 2020 Oct; 185():116230. PubMed ID: 32784032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization.
    Zhou C; Zhou Y; Rittmann BE
    Water Res; 2017 Aug; 119():91-101. PubMed ID: 28436827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.