These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3248843)

  • 1. Metabolism of fossil fuels by chemoautotrophic nocardioform bacteria from infectious leprosy tissues and its implications.
    Chakrabarty AN; Das S; Bhattacharya CP; Dastidar SG
    Indian J Exp Biol; 1988 Nov; 26(11):845-7. PubMed ID: 3248843
    [No Abstract]   [Full Text] [Related]  

  • 2. Silicon (Si) utilisation by chemoautotrophic nocardioform bacteria isolated from human and animal tissues infected with leprosy bacillus.
    Chakrabarty AN; Das S; Mukherjee K; Dastidar SG; Sen DK
    Indian J Exp Biol; 1988 Nov; 26(11):839-44. PubMed ID: 3248842
    [No Abstract]   [Full Text] [Related]  

  • 3. Leprosy-derived chemoautotrophic nocardioform (CAN) bacteria closely resemble, or are identical with, Mycobacterium leprae on mycolate and other lipid profiles.
    Chakrabarty AN; Dastidar SG
    Indian J Lepr; 1992; 64(4):529-35. PubMed ID: 1308529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between occurrence of leprosy and fossil fuels: role of fossil fuel bacteria in the origin and global epidemiology of leprosy.
    Chakrabarty AN; Dastidar SG
    Indian J Exp Biol; 1989 Jun; 27(6):483-96. PubMed ID: 2684847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of culture granules of leprosy derived acid-fast chemoautotrophic nocardioform bacteria.
    Chakrabarty AN; Das S; Pal NK; Dastidar SG
    Indian J Exp Biol; 1988 Feb; 26(2):144-6. PubMed ID: 3294165
    [No Abstract]   [Full Text] [Related]  

  • 6. Cultivation in vitro of acid-fast nocardioform chemoautotrophic bacteria from mouse foot-pads infected with human strains of leprosy bacillus.
    Chakrabarty AN; Dastidar SG; Das S; Chandra AK
    Indian J Lepr; 1990; 62(2):169-79. PubMed ID: 2212731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leprosy bacillus--possibly the first chemoautotrophic human pathogen cultivated in vitro and characterised.
    Chakrabarty AN; Dastidar SG; Sen A; Banerjee P; Roy R
    Indian J Exp Biol; 2001 Oct; 39(10):962-83. PubMed ID: 11883520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on the Mitsuda type response to antigens of chemoautotrophic nocardioform bacteria and to standard lepromin in leprosy patients.
    Chakrabarty AN; Dastidar SG; Chandra AK; Mukherjee M; Chaudhuri SK
    Acta Leprol; 1999; 11(3):105-12. PubMed ID: 10544723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is soil an alternative source of leprosy infection?
    Chakrabarty AN; Dastidar SG
    Acta Leprol; 2001-2002; 12(2):79-84. PubMed ID: 12136740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microscopic characteristics of actinomycetic agents having aetiological association with human leprosy and epizootic ulcerative syndrome of fish.
    Chakrabarty A; Mukherjee M; Chakrabarty AN; Dastidar SG; Basak P; Saha B
    Indian J Exp Biol; 1996 Aug; 34(8):810-2. PubMed ID: 8979491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fossil fuels in the 21st century.
    Lincoln SF
    Ambio; 2005 Dec; 34(8):621-7. PubMed ID: 16521838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends in the biology of fermentations for fuels and chemicals.
    Basic Life Sci; 1981; 18():1-591. PubMed ID: 7271706
    [No Abstract]   [Full Text] [Related]  

  • 13. Lipids as taxonomic markers for bacteria derived from leprosy infections.
    Asselineau C; Daffé M; David HL; Lanéelle MA; Rastogi N
    Acta Leprol; 1984; 2(2-4):121-7. PubMed ID: 6398577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fossil fuels, allergies, and a host of other ills.
    Epstein PR
    J Allergy Clin Immunol; 2008 Sep; 122(3):471-2. PubMed ID: 18774382
    [No Abstract]   [Full Text] [Related]  

  • 15. Deep desulfurization of fossil fuels by air in the absence of a catalyst.
    Xu X; Moulijn JA; Ito E; Wagemans R; Makkee M
    ChemSusChem; 2008; 1(10):817-9. PubMed ID: 18821559
    [No Abstract]   [Full Text] [Related]  

  • 16. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
    Fellner J; Rechberger H
    Waste Manag; 2009 May; 29(5):1495-503. PubMed ID: 19157836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential shifts in consumption of metabolic fuels following exposure to rocket fuel substances.
    Bitter HL; Clark DA; Lackey WW
    Aerosp Med; 1969 May; 40(5):526-31. PubMed ID: 5770662
    [No Abstract]   [Full Text] [Related]  

  • 18. The long-term carbon cycle, fossil fuels and atmospheric composition.
    Berner RA
    Nature; 2003 Nov; 426(6964):323-6. PubMed ID: 14628061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Morphologic and biologic properties of diphtherroid organisms (LDC) isolated in leprosy].
    Delville J; Spina A; Rayyan W; Cocito C; Saint-André P; Niamien N'Deli L; Van Droogenbroeck J
    Acta Leprol; 1982; (86-87):59-68. PubMed ID: 6815998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial biocatalyst developments to upgrade fossil fuels.
    Kilbane JJ
    Curr Opin Biotechnol; 2006 Jun; 17(3):305-14. PubMed ID: 16678400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.