These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 32488892)
1. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. AbdElgawad H; Avramova V; Baggerman G; Van Raemdonck G; Valkenborg D; Van Ostade X; Guisez Y; Prinsen E; Asard H; Van den Ende W; Beemster GTS Plant Cell Environ; 2020 Sep; 43(9):2254-2271. PubMed ID: 32488892 [TBL] [Abstract][Full Text] [Related]
2. Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Sicher RC; Barnaby JY Physiol Plant; 2012 Mar; 144(3):238-53. PubMed ID: 22150442 [TBL] [Abstract][Full Text] [Related]
3. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. Ahmad S; Muhammad I; Wang GY; Zeeshan M; Yang L; Ali I; Zhou XB BMC Plant Biol; 2021 Aug; 21(1):368. PubMed ID: 34384391 [TBL] [Abstract][Full Text] [Related]
4. Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. Kakani VG; Vu JC; Allen LH; Boote KJ J Plant Physiol; 2011 Dec; 168(18):2169-76. PubMed ID: 21835494 [TBL] [Abstract][Full Text] [Related]
5. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. Dworak A; Nykiel M; Walczak B; Miazek A; Szworst-Łupina D; Zagdańska B; Kiełkiewicz M Planta; 2016 Oct; 244(4):939-60. PubMed ID: 27334025 [TBL] [Abstract][Full Text] [Related]
6. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
7. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Ji K; Wang Y; Sun W; Lou Q; Mei H; Shen S; Chen H J Plant Physiol; 2012 Mar; 169(4):336-44. PubMed ID: 22137606 [TBL] [Abstract][Full Text] [Related]
8. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Yang M; Geng M; Shen P; Chen X; Li Y; Wen X Plant Physiol Biochem; 2019 Feb; 135():304-309. PubMed ID: 30599307 [TBL] [Abstract][Full Text] [Related]
10. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
11. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Yandeau-Nelson MD; Laurens L; Shi Z; Xia H; Smith AM; Guiltinan MJ Plant Physiol; 2011 Jun; 156(2):479-90. PubMed ID: 21508184 [TBL] [Abstract][Full Text] [Related]
12. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Jiang Z; Jin F; Shan X; Li Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
14. Leaf starch degradation by β-amylase ZmBAM8 influences drought tolerance in maize. Niu L; Wu X; Liu H; Hu X; Wang W Carbohydr Polym; 2024 Dec; 345():122555. PubMed ID: 39227118 [TBL] [Abstract][Full Text] [Related]
15. Physiological investigation of C Zhang C; Li X; He Y; Zhang J; Yan T; Liu X Plant Physiol Biochem; 2017 Jun; 115():328-342. PubMed ID: 28415033 [TBL] [Abstract][Full Text] [Related]
16. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Zhu D; Chang Y; Pei T; Zhang X; Liu L; Li Y; Zhuang J; Yang H; Qin F; Song C; Ren D Plant J; 2020 May; 102(4):747-760. PubMed ID: 31863495 [TBL] [Abstract][Full Text] [Related]
17. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings. Ren W; Shi Z; Zhou M; Zhao B; Li H; Wang J; Liu Y; Zhao J Sci Rep; 2022 Jun; 12(1):9520. PubMed ID: 35681021 [TBL] [Abstract][Full Text] [Related]
18. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery. Brossa R; Pintó-Marijuan M; Francisco R; López-Carbonell M; Chaves MM; Alegre L Planta; 2015 Apr; 241(4):803-22. PubMed ID: 25502480 [TBL] [Abstract][Full Text] [Related]
19. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.). Gou W; Zheng P; Tian L; Gao M; Zhang L; Akram NA; Ashraf M J Plant Res; 2017 May; 130(3):599-609. PubMed ID: 28324190 [TBL] [Abstract][Full Text] [Related]
20. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. Wang B; Liu C; Zhang D; He C; Zhang J; Li Z BMC Plant Biol; 2019 Aug; 19(1):335. PubMed ID: 31370805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]