These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 32488970)
1. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440. Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970 [TBL] [Abstract][Full Text] [Related]
2. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Zhou Y; Lin L; Wang H; Zhang Z; Zhou J; Jiao N Commun Biol; 2020 Mar; 3(1):98. PubMed ID: 32139868 [TBL] [Abstract][Full Text] [Related]
3. Protocatechuic acid production from lignin-associated phenolics. Upadhyay P; Lali A Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338 [TBL] [Abstract][Full Text] [Related]
4. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Plaggenborg R; Overhage J; Steinbüchel A; Priefert H Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):528-35. PubMed ID: 12764569 [TBL] [Abstract][Full Text] [Related]
5. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Graf N; Altenbuchner J Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered Upadhyay P; Singh NK; Tupe R; Odenath A; Lali A Prep Biochem Biotechnol; 2020; 50(4):341-348. PubMed ID: 31809239 [TBL] [Abstract][Full Text] [Related]
7. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86. Mohan K; Phale PS Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206 [No Abstract] [Full Text] [Related]
8. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis. Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194 [TBL] [Abstract][Full Text] [Related]
9. Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production in Pseudomonas putida KT2440. Calero P; Jensen SI; Nielsen AT ACS Synth Biol; 2016 Jul; 5(7):741-53. PubMed ID: 27092814 [TBL] [Abstract][Full Text] [Related]
10. Ferulic acid triggering a co-production of 4-vinyl guaiacol and fumaric acid from lignocellulose-based carbon source by Rhizopus oryzae. Tang X; Wu S; Hua X; Fan Y; Li X Food Chem; 2024 Dec; 461():140799. PubMed ID: 39154464 [TBL] [Abstract][Full Text] [Related]
11. Formation of 4-vinyl guaiacol as an intermediate in bioconversion of ferulic acid by Schizophyllum commune. Tsujiyama S; Ueno M Biosci Biotechnol Biochem; 2008 Jan; 72(1):212-5. PubMed ID: 18175910 [TBL] [Abstract][Full Text] [Related]
13. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971 [TBL] [Abstract][Full Text] [Related]
14. Engineering Pseudomonas putida for improved utilization of syringyl aromatics. Mueller J; Willett H; Feist AM; Niu W Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the tolerance and biotransformation of ferulic acid by Klebsiella pneumoniae TD 4.7. Dos Santos MBC; Scarpassa JA; Monteiro DA; Ladino-Orjuela G; Da Silva R; Boscolo M; Gomes E Braz J Microbiol; 2021 Sep; 52(3):1181-1190. PubMed ID: 33660233 [TBL] [Abstract][Full Text] [Related]
16. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing. Langos D; Granvogl M J Agric Food Chem; 2016 Mar; 64(11):2325-32. PubMed ID: 26800353 [TBL] [Abstract][Full Text] [Related]
17. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger. Baqueiro-Peña I; Rodríguez-Serrano G; González-Zamora E; Augur C; Loera O; Saucedo-Castañeda G Bioresour Technol; 2010 Jun; 101(12):4721-4. PubMed ID: 20153180 [TBL] [Abstract][Full Text] [Related]
18. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. Coghe S; Benoot K; Delvaux F; Vanderhaegen B; Delvaux FR J Agric Food Chem; 2004 Feb; 52(3):602-8. PubMed ID: 14759156 [TBL] [Abstract][Full Text] [Related]
19. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Li J; Yue C; Wei W; Shang Y; Zhang P; Ye BC Bioresour Technol; 2022 Jan; 344(Pt B):126221. PubMed ID: 34728357 [TBL] [Abstract][Full Text] [Related]
20. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]