BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32489073)

  • 1. [Transcriptomic data analyses of wild and cultivated Angelica sinensis root by high-throughput sequencing technology].
    Feng WM; Liu P; Yan H; Yu G; Guo ZX; Zhu L; Ma JW; Qian DW; Duan JA
    Zhongguo Zhong Yao Za Zhi; 2020 Apr; 45(8):1879-1886. PubMed ID: 32489073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis.
    Yu G; Zhou Y; Yu J; Hu X; Tang Y; Yan H; Duan J
    Sci Rep; 2019 Jul; 9(1):10035. PubMed ID: 31296928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response.
    Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ
    BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the transcriptomic complexity of Miscanthus sinensis using a combination of PacBio long read- and Illumina short read sequencing platforms.
    Wang Y; Li X; Wang C; Gao L; Wu Y; Ni X; Sun J; Jiang J
    BMC Genomics; 2021 Sep; 22(1):690. PubMed ID: 34551715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-length transcriptome analysis provides new insights into the early bolting occurrence in medicinal Angelica sinensis.
    Gao X; Guo F; Chen Y; Bai G; Liu Y; Jin J; Wang Q
    Sci Rep; 2021 Jun; 11(1):13000. PubMed ID: 34155325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.
    Ye W; Wu H; He X; Wang L; Zhang W; Li H; Fan Y; Tan G; Liu T; Gao X
    PLoS One; 2016; 11(5):e0155505. PubMed ID: 27182594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentially expressed genes in heads and tails of Angelica sinensis diels: Focusing on ferulic acid metabolism.
    Yang J; Li WH; An R; Wang YL; Xu Y; Chen J; Wang XF; Zhang XB; Li J; Ding WJ
    Chin J Integr Med; 2017 Oct; 23(10):779-785. PubMed ID: 27586474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform.
    Zhou SM; Chen LM; Liu SQ; Wang XF; Sun XD
    PLoS One; 2015; 10(7):e0133312. PubMed ID: 26204518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-Length Transcriptome Survey and Expression Analysis of
    Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.
    Yang M; You W; Wu S; Fan Z; Xu B; Zhu M; Li X; Xiao Y
    BMC Genomics; 2017 Mar; 18(1):245. PubMed ID: 28330463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enriching Genomic Resources and Transcriptional Profile Analysis of
    Nie G; Huang L; Ma X; Ji Z; Zhang Y; Tang L; Zhang X
    Int J Genomics; 2017; 2017():9184731. PubMed ID: 29318138
    [No Abstract]   [Full Text] [Related]  

  • 13. [Next generation sequencing and transcriptome analysis of root bark from Paeonia suffruticosa cv. Feng Dan].
    Xie DM; Yu NJ; Huang LQ; Peng DY; Liu CB; Zhu YJ; Huang H
    Zhongguo Zhong Yao Za Zhi; 2017 Aug; 42(15):2954-2961. PubMed ID: 29139263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of transcriptome differences in two leaf-type cultivars of Aconitum carmichaelii].
    Zhong S; Yin YP; He YN; Li MJ; Zhang M; Li SN; Peng C; Zhang DK; Gao JH
    Zhongguo Zhong Yao Za Zhi; 2020 Apr; 45(7):1633-1640. PubMed ID: 32489043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ASAP: a platform for gene functional analysis in Angelica sinensis.
    Wu S; Da L; Xiao Q; Pan Q; Zhang J; Yang J
    BMC Genomics; 2024 Jan; 25(1):96. PubMed ID: 38262929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Mechanism of Flavonoid Biosynthesis in Two Cultivars of
    Zhu T; Zhang M; Su H; Li M; Wang Y; Jin L; Li M
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011537
    [No Abstract]   [Full Text] [Related]  

  • 18. Full-length transcriptome sequencing and comparative transcriptome analysis of
    Hou L; Wang M; Zhu L; Ning M; Bi J; Du J; Kong X; Gu W; Meng Q
    Front Cell Infect Microbiol; 2022; 12():997574. PubMed ID: 36530442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo transcriptome characterization of the ghost moth, Thitarodes pui, and elevation-based differences in the gene expression of its larvae.
    Wu W; Sun H; Guo J; Jiang F; Liu X; Zhang G
    Gene; 2015 Dec; 574(1):95-105. PubMed ID: 26235680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii.
    Qiu Z; Liu F; Lu H; Yuan H; Zhang Q; Huang Y
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27455245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.