BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32489101)

  • 1. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals a Cross-Protection Mechanism for
    Zhou B; Yang J; Bi L; Li J; Ma Y; Tian Y; Zhong H; Ren J
    J Agric Food Chem; 2020 Jun; 68(24):6672-6682. PubMed ID: 32489101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of
    Zhou B; Ma Y; Tian Y; Li J; Zhong H
    J Agric Food Chem; 2020 Jan; 68(3):808-817. PubMed ID: 31870144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NaCl Inhibits Citrinin and Stimulates
    Zhen Z; Xiong X; Liu Y; Zhang J; Wang S; Li L; Gao M
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30769930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.
    Huang ZR; Zhou WB; Yang XL; Tong AJ; Hong JL; Guo WL; Li TT; Jia RB; Pan YY; Lin J; Lv XC; Liu B
    Food Res Int; 2018 Apr; 106():626-635. PubMed ID: 29579968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic protein patterns and monascorubrin production revealed through proteomic approach for Monascus pilosus treated with cycloheximide.
    Lin WY; Chang JY; Tsai PC; Pan TM
    J Agric Food Chem; 2007 Jul; 55(14):5559-68. PubMed ID: 17559225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Effects of the pksCT Gene on Monascus aurantiacus Li As3.4384 Using Gas Chromatography--Time-of-Flight Mass Spectrometry-Based Metabolomics.
    Huang Z; Zhang S; Xu Y; Li L; Li Y
    J Agric Food Chem; 2016 Feb; 64(7):1565-74. PubMed ID: 26824776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber.
    Yan Q; Zhang Z; Yang Y; Chen F; Shao Y
    J Microbiol; 2018 Apr; 56(4):255-263. PubMed ID: 29492865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation contributes more to Monascus pigments diversity in different strains than to DNA sequence variation.
    Guo X; Li Y; Zhang R; Yu J; Ma X; Chen M; Wang Y
    World J Microbiol Biotechnol; 2019 Aug; 35(9):138. PubMed ID: 31451937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addition of genistein to the fermentation process reduces citrinin production by Monascus via changes at the transcription level.
    Ouyang W; Liu X; Wang Y; Huang Z; Li X
    Food Chem; 2021 May; 343():128410. PubMed ID: 33406573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans.
    Lara-Ortíz T; Riveros-Rosas H; Aguirre J
    Mol Microbiol; 2003 Nov; 50(4):1241-55. PubMed ID: 14622412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus.
    Zhang C; Zhang H; Zhu Q; Hao S; Chai S; Li Y; Jiao Z; Shi J; Sun B; Wang C
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3049-3060. PubMed ID: 32043189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus.
    Chen YP; Yuan GF; Hsieh SY; Lin YS; Wang WY; Liaw LL; Tseng CP
    J Agric Food Chem; 2010 Jan; 58(1):287-93. PubMed ID: 19968298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of a pigment-polyketide synthase gene deleted mutant of Monascus ruber M7].
    Xie N; Zhang Y; Chen F
    Wei Sheng Wu Xue Bao; 2015 Jul; 55(7):863-72. PubMed ID: 26710605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic response to intracellular proteins of Monascus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production.
    Lin WY; Ting YC; Pan TM
    J Agric Food Chem; 2007 Jan; 55(2):467-74. PubMed ID: 17227081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of two potential toxicity metabolites derived from the disruption of the pksCT gene in Monascus aurantiacus Li As3.4384.
    Huang Z; Su B; Xu Y; Li L; Li Y
    J Sci Food Agric; 2017 Sep; 97(12):4190-4197. PubMed ID: 28239868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation of selected CpG islands involved in the transcription of myeloperoxidase and superoxide dismutase 2 in neutrophils of periparturient and mid-lactation cows.
    Boulougouris X; Rogiers C; Van Poucke M; De Spiegeleer B; Peelman L; Duchateau L; Burvenich C
    J Dairy Sci; 2019 Aug; 102(8):7421-7434. PubMed ID: 31178179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury.
    Vaziri ND; Lee YS; Lin CY; Lin VW; Sindhu RK
    Brain Res; 2004 Jan; 995(1):76-83. PubMed ID: 14644473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity.
    Gupta DK; Pena LB; Romero-Puertas MC; Hernández A; Inouhe M; Sandalio LM
    Plant Cell Environ; 2017 Apr; 40(4):509-526. PubMed ID: 26765289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of the Ergosterol Biosynthetic Pathway Results in Increased Membrane Permeability, Causing Overproduction and Secretion of Extracellular
    Liu J; Chai X; Guo T; Wu J; Yang P; Luo Y; Zhao H; Zhao W; Nkechi O; Dong J; Bai J; Lin Q
    J Agric Food Chem; 2019 Dec; 67(49):13673-13683. PubMed ID: 31617717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.