These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32489517)
1. Airborne signals and abiotic factors: the neglected side of the plant communication. Landi M Commun Integr Biol; 2020; 13(1):67-73. PubMed ID: 32489517 [TBL] [Abstract][Full Text] [Related]
2. "Help is in the air": volatiles from salt-stressed plants increase the reproductive success of receivers under salinity. Landi M; Araniti F; Flamini G; Piccolo EL; Trivellini A; Abenavoli MR; Guidi L Planta; 2020 Jan; 251(2):48. PubMed ID: 31932951 [TBL] [Abstract][Full Text] [Related]
5. High levels of abiotic noise in volatile organic compounds released by a desert perennial: implications for the evolution and ecology of airborne chemical communication. Wilson JK; Woods HA; Kessler A Oecologia; 2018 Oct; 188(2):367-379. PubMed ID: 29998402 [TBL] [Abstract][Full Text] [Related]
6. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. Lazazzara V; Avesani S; Robatscher P; Oberhuber M; Pertot I; Schuhmacher R; Perazzolli M J Exp Bot; 2022 Jan; 73(2):529-554. PubMed ID: 34409450 [TBL] [Abstract][Full Text] [Related]
7. Microbe-induced plant volatiles. Sharifi R; Lee SM; Ryu CM New Phytol; 2018 Nov; 220(3):684-691. PubMed ID: 29266296 [TBL] [Abstract][Full Text] [Related]
8. Specificity and context-dependency of plant-plant communication in response to insect herbivory. Moreira X; Abdala-Roberts L Curr Opin Insect Sci; 2019 Apr; 32():15-21. PubMed ID: 31113626 [TBL] [Abstract][Full Text] [Related]
9. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. Jin J; Zhao M; Jing T; Zhang M; Lu M; Yu G; Wang J; Guo D; Pan Y; Hoffmann TD; Schwab W; Song C Hortic Res; 2023 Sep; 10(9):uhad143. PubMed ID: 37691961 [TBL] [Abstract][Full Text] [Related]
10. Smelling global climate change: mitigation of function for plant volatile organic compounds. Yuan JS; Himanen SJ; Holopainen JK; Chen F; Stewart CN Trends Ecol Evol; 2009 Jun; 24(6):323-31. PubMed ID: 19324451 [TBL] [Abstract][Full Text] [Related]
11. Specificity of plant-plant communication for Baccharis salicifolia sexes but not genotypes. Moreira X; Nell CS; Meza-Lopez MM; Rasmann S; Mooney KA Ecology; 2018 Dec; 99(12):2731-2739. PubMed ID: 30508249 [TBL] [Abstract][Full Text] [Related]
12. Volatile-Mediated Interactions between Cabbage Plants in the Field and the Impact of Ozone Pollution. Giron-Calva PS; Li T; Blande JD J Chem Ecol; 2017 Apr; 43(4):339-350. PubMed ID: 28357603 [TBL] [Abstract][Full Text] [Related]
13. Airborne signals synchronize the defenses of neighboring plants in response to touch. Markovic D; Colzi I; Taiti C; Ray S; Scalone R; Gregory Ali J; Mancuso S; Ninkovic V J Exp Bot; 2019 Jan; 70(2):691-700. PubMed ID: 30380091 [TBL] [Abstract][Full Text] [Related]
14. Why Algae Release Volatile Organic Compounds-The Emission and Roles. Zuo Z Front Microbiol; 2019; 10():491. PubMed ID: 30915062 [TBL] [Abstract][Full Text] [Related]
15. Explaining evolution of plant communication by airborne signals. Heil M; Karban R Trends Ecol Evol; 2010 Mar; 25(3):137-44. PubMed ID: 19837476 [TBL] [Abstract][Full Text] [Related]
16. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Heil M; Silva Bueno JC Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5467-72. PubMed ID: 17360371 [TBL] [Abstract][Full Text] [Related]