BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32489517)

  • 1. Airborne signals and abiotic factors: the neglected side of the plant communication.
    Landi M
    Commun Integr Biol; 2020; 13(1):67-73. PubMed ID: 32489517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Help is in the air": volatiles from salt-stressed plants increase the reproductive success of receivers under salinity.
    Landi M; Araniti F; Flamini G; Piccolo EL; Trivellini A; Abenavoli MR; Guidi L
    Planta; 2020 Jan; 251(2):48. PubMed ID: 31932951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication.
    Midzi J; Jeffery DW; Baumann U; Rogiers S; Tyerman SD; Pagay V
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect Herbivory Selects for Volatile-Mediated Plant-Plant Communication.
    Kalske A; Shiojiri K; Uesugi A; Sakata Y; Morrell K; Kessler A
    Curr Biol; 2019 Sep; 29(18):3128-3133.e3. PubMed ID: 31522939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High levels of abiotic noise in volatile organic compounds released by a desert perennial: implications for the evolution and ecology of airborne chemical communication.
    Wilson JK; Woods HA; Kessler A
    Oecologia; 2018 Oct; 188(2):367-379. PubMed ID: 29998402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors.
    Lazazzara V; Avesani S; Robatscher P; Oberhuber M; Pertot I; Schuhmacher R; Perazzolli M
    J Exp Bot; 2022 Jan; 73(2):529-554. PubMed ID: 34409450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe-induced plant volatiles.
    Sharifi R; Lee SM; Ryu CM
    New Phytol; 2018 Nov; 220(3):684-691. PubMed ID: 29266296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity and context-dependency of plant-plant communication in response to insect herbivory.
    Moreira X; Abdala-Roberts L
    Curr Opin Insect Sci; 2019 Apr; 32():15-21. PubMed ID: 31113626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model.
    Jin J; Zhao M; Jing T; Zhang M; Lu M; Yu G; Wang J; Guo D; Pan Y; Hoffmann TD; Schwab W; Song C
    Hortic Res; 2023 Sep; 10(9):uhad143. PubMed ID: 37691961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smelling global climate change: mitigation of function for plant volatile organic compounds.
    Yuan JS; Himanen SJ; Holopainen JK; Chen F; Stewart CN
    Trends Ecol Evol; 2009 Jun; 24(6):323-31. PubMed ID: 19324451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of plant-plant communication for Baccharis salicifolia sexes but not genotypes.
    Moreira X; Nell CS; Meza-Lopez MM; Rasmann S; Mooney KA
    Ecology; 2018 Dec; 99(12):2731-2739. PubMed ID: 30508249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile-Mediated Interactions between Cabbage Plants in the Field and the Impact of Ozone Pollution.
    Giron-Calva PS; Li T; Blande JD
    J Chem Ecol; 2017 Apr; 43(4):339-350. PubMed ID: 28357603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne signals synchronize the defenses of neighboring plants in response to touch.
    Markovic D; Colzi I; Taiti C; Ray S; Scalone R; Gregory Ali J; Mancuso S; Ninkovic V
    J Exp Bot; 2019 Jan; 70(2):691-700. PubMed ID: 30380091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why Algae Release Volatile Organic Compounds-The Emission and Roles.
    Zuo Z
    Front Microbiol; 2019; 10():491. PubMed ID: 30915062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explaining evolution of plant communication by airborne signals.
    Heil M; Karban R
    Trends Ecol Evol; 2010 Mar; 25(3):137-44. PubMed ID: 19837476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature.
    Heil M; Silva Bueno JC
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5467-72. PubMed ID: 17360371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Plant-Plant Communication Induced by Infochemical Methyl Jasmonate in Sorghum (
    Yamashita F; Rodrigues AL; Rodrigues TM; Palermo FH; Baluška F; Almeida LFR
    Plants (Basel); 2021 Mar; 10(3):. PubMed ID: 33806670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple stress factors and the emission of plant VOCs.
    Holopainen JK; Gershenzon J
    Trends Plant Sci; 2010 Mar; 15(3):176-84. PubMed ID: 20144557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile organic compounds in aquatic ecosystems - Detection, origin, significance and applications.
    Pozzer AC; Gómez PA; Weiss J
    Sci Total Environ; 2022 Sep; 838(Pt 2):156155. PubMed ID: 35609693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using 'mute' plants to translate volatile signals.
    Paschold A; Halitschke R; Baldwin IT
    Plant J; 2006 Jan; 45(2):275-91. PubMed ID: 16367970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.