These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32490183)
21. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting. Cui J; Li C; Zhang F ChemSusChem; 2019 May; 12(9):1872-1888. PubMed ID: 30211984 [TBL] [Abstract][Full Text] [Related]
22. Visible-Light-Responsive 2D Cadmium-Organic Framework Single Crystals with Dual Functions of Water Reduction and Oxidation. Xiao Y; Qi Y; Wang X; Wang X; Zhang F; Li C Adv Mater; 2018 Nov; 30(44):e1803401. PubMed ID: 30295957 [TBL] [Abstract][Full Text] [Related]
23. Efficient Visible-Light-Driven CO Wu J; Li X; Shi W; Ling P; Sun Y; Jiao X; Gao S; Liang L; Xu J; Yan W; Wang C; Xie Y Angew Chem Int Ed Engl; 2018 Jul; 57(28):8719-8723. PubMed ID: 29761617 [TBL] [Abstract][Full Text] [Related]
24. Metal-Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO Maeda K Adv Mater; 2019 Jun; 31(25):e1808205. PubMed ID: 31066136 [TBL] [Abstract][Full Text] [Related]
25. A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction. Kuriki R; Ichibha T; Hongo K; Lu D; Maezono R; Kageyama H; Ishitani O; Oka K; Maeda K J Am Chem Soc; 2018 May; 140(21):6648-6655. PubMed ID: 29733632 [TBL] [Abstract][Full Text] [Related]
26. Graphitic carbon nitride nanosheets anchored with BiOBr and carbon dots: Exceptional visible-light-driven photocatalytic performances for oxidation and reduction reactions. Asadzadeh-Khaneghah S; Habibi-Yangjeh A; Nakata K J Colloid Interface Sci; 2018 Nov; 530():642-657. PubMed ID: 30007194 [TBL] [Abstract][Full Text] [Related]
27. Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO Vu NN; Kaliaguine S; Do TO ChemSusChem; 2020 Aug; 13(16):3967-3991. PubMed ID: 32476290 [TBL] [Abstract][Full Text] [Related]
28. Effective Charge Carrier Utilization in Photocatalytic Conversions. Zhang P; Wang T; Chang X; Gong J Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166 [TBL] [Abstract][Full Text] [Related]
29. Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Kofuji Y; Isobe Y; Shiraishi Y; Sakamoto H; Tanaka S; Ichikawa S; Hirai T J Am Chem Soc; 2016 Aug; 138(31):10019-25. PubMed ID: 27439985 [TBL] [Abstract][Full Text] [Related]
30. A distinctive semiconductor-metalloid heterojunction: unique electronic structure and enhanced CO Li X; Wang M; Wang R; Shen M; Wu P; Fu Z; Zhu M; Zhang L J Colloid Interface Sci; 2022 Jun; 615():821-830. PubMed ID: 35180630 [TBL] [Abstract][Full Text] [Related]
31. Recent Advances in TiO Nguyen TP; Nguyen DLT; Nguyen VH; Le TH; Vo DN; Trinh QT; Bae SR; Chae SY; Kim SY; Le QV Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32079215 [TBL] [Abstract][Full Text] [Related]
33. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Li L; Yan J; Wang T; Zhao ZJ; Zhang J; Gong J; Guan N Nat Commun; 2015 Jan; 6():5881. PubMed ID: 25562287 [TBL] [Abstract][Full Text] [Related]
34. Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO Hong X; Tan J; Zhu H; Feng N; Yang Y; Irvine JTS; Wang L; Liu G; Cheng HM Chemistry; 2019 Feb; 25(7):1787-1794. PubMed ID: 30489669 [TBL] [Abstract][Full Text] [Related]
35. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Zou Z; Ye J; Sayama K; Arakawa H Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556 [TBL] [Abstract][Full Text] [Related]
36. Surface plasmon resonance enhanced direct Z-scheme TiO Zhang W; Hu Y; Yan C; Hong D; Chen R; Xue X; Yang S; Tian Y; Tie Z; Jin Z Nanoscale; 2019 May; 11(18):9053-9060. PubMed ID: 31025687 [TBL] [Abstract][Full Text] [Related]
37. Study of Au/Au(3+)-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Li XZ; Li FB Environ Sci Technol; 2001 Jun; 35(11):2381-7. PubMed ID: 11414049 [TBL] [Abstract][Full Text] [Related]
38. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
39. Black Phosphorus-Based Semiconductor Heterojunctions for Photocatalytic Water Splitting. Liu F; Huang C; Liu CX; Shi R; Chen Y Chemistry; 2020 Apr; 26(20):4449-4460. PubMed ID: 31710131 [TBL] [Abstract][Full Text] [Related]
40. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value-Added Chemicals. Guo LJ; Wang YJ; He T Chem Rec; 2016 Aug; 16(4):1918-33. PubMed ID: 27276171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]