These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32490346)

  • 21. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS.
    Schmidt RJ; Veit B; Mandel MA; Mena M; Hake S; Yanofsky MF
    Plant Cell; 1993 Jul; 5(7):729-37. PubMed ID: 8103379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions.
    Lü S; Du X; Lu W; Chong K; Meng Z
    Evol Dev; 2007; 9(1):92-104. PubMed ID: 17227369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation in floral form of CRISPR knock-outs of the poplar homologs of
    Klocko AL; Elorriaga E; Ma C; Strauss SH
    Hortic Res; 2023 Aug; 10(8):uhad132. PubMed ID: 37564267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MADS reloaded: evolution of the AGAMOUS subfamily genes.
    Dreni L; Kater MM
    New Phytol; 2014 Feb; 201(3):717-732. PubMed ID: 24164649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two similar but distinct second intron fragments from tobacco AGAMOUS homologs confer identical floral organ-specific expression sufficient for generating complete sterility in plants.
    Yang Y; Singer SD; Liu Z
    Planta; 2010 Apr; 231(5):1159-69. PubMed ID: 20182740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.
    Mizukami Y; Huang H; Tudor M; Hu Y; Ma H
    Plant Cell; 1996 May; 8(5):831-45. PubMed ID: 8672883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate.
    Kater MM; Colombo L; Franken J; Busscher M; Masiero S; Van Lookeren Campagne MM; Angenent GC
    Plant Cell; 1998 Feb; 10(2):171-82. PubMed ID: 9490741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.
    Tzeng TY; Chen HY; Yang CH
    Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNAi Suppression of
    Klocko AL; Goddard AL; Jacobson JR; Magnuson AC; Strauss SH
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.
    Drews GN; Bowman JL; Meyerowitz EM
    Cell; 1991 Jun; 65(6):991-1002. PubMed ID: 1675158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem.
    Engelhorn J; Moreau F; Fletcher JC; Carles CC
    Ann Bot; 2014 Nov; 114(7):1497-505. PubMed ID: 25288633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development.
    Gimenez E; Castañeda L; Pineda B; Pan IL; Moreno V; Angosto T; Lozano R
    Plant Mol Biol; 2016 Jul; 91(4-5):513-31. PubMed ID: 27125648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development.
    Pan IL; McQuinn R; Giovannoni JJ; Irish VF
    J Exp Bot; 2010 Jun; 61(6):1795-806. PubMed ID: 20335407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The origin and evolution of carpels and fruits from an evo-devo perspective.
    Liu H; Li J; Gong P; He C
    J Integr Plant Biol; 2023 Feb; 65(2):283-298. PubMed ID: 36031801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.
    Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D
    BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Urbanus SL; Martinelli AP; Dinh QD; Aizza LC; Dornelas MC; Angenent GC; Immink RG
    Plant J; 2010 Jul; 63(1):60-72. PubMed ID: 20374529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and Characterization of
    Ma J; Shen X; Liu Z; Zhang D; Liu W; Liang H; Wang Y; He Z; Chen F
    Front Plant Sci; 2018; 9():959. PubMed ID: 30050547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina.
    Ordidge M; Chiurugwi T; Tooke F; Battey NH
    Plant J; 2005 Dec; 44(6):985-1000. PubMed ID: 16359391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis.
    Hsu WH; Yeh TJ; Huang KY; Li JY; Chen HY; Yang CH
    Plant J; 2014 Jan; 77(1):1-15. PubMed ID: 24164574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the redundancy of MADS-box genes during carpel and ovule development.
    Pinyopich A; Ditta GS; Savidge B; Liljegren SJ; Baumann E; Wisman E; Yanofsky MF
    Nature; 2003 Jul; 424(6944):85-8. PubMed ID: 12840762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.