These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 32490445)

  • 1. The shuttling mechanism of foldaxanes: more than just translocation and rotation.
    Liu P; Hao W; Bian X; Mei D
    Phys Chem Chem Phys; 2020 Jun; 22(23):12967-12972. PubMed ID: 32490445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The true nature of rotary movements in rotaxanes.
    Liu P; Shao X; Chipot C; Cai W
    Chem Sci; 2016 Jan; 7(1):457-462. PubMed ID: 30155010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between a Foldamer Helix and a Macrocycle in a Foldarotaxane Architecture.
    Gauthier M; Koehler V; Clavel C; Kauffmann B; Huc I; Ferrand Y; Coutrot F
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8380-8384. PubMed ID: 33475210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into directional movement in molecular machines from free-energy calculations.
    Feng H; Fu H; Shao X; Cai W
    Phys Chem Chem Phys; 2020 Apr; 22(15):7888-7893. PubMed ID: 32227040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Foldaxane-Based Supramolecular Muscle-Like Switch.
    Waelès P; Coutrot F
    ChemistryOpen; 2024 Oct; 13(10):e202400076. PubMed ID: 38963159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Fluctuations in Single-Molecule Rotaxane Experiments Reveal an Intermediate Weak Binding State during Shuttling.
    Sluysmans D; Lussis P; Fustin CA; Bertocco A; Leigh DA; Duwez AS
    J Am Chem Soc; 2021 Feb; 143(5):2348-2352. PubMed ID: 33417442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the helicity switching mechanism: a case study of the rigid three-tiered stacked architecture.
    Liu P; Liu Y; Bian X; Tan X
    Phys Chem Chem Phys; 2018 Nov; 20(45):28881-28885. PubMed ID: 30420990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foldaxane-Based Switchable [c2]Daisy Chains.
    Liao S; Tang J; Ma C; Yu L; Tan Y; Li X; Gan Q
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202315668. PubMed ID: 38346927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of the Ras-binding domain of Raf studied by molecular dynamics and free energy simulations.
    Zeng J; Treutlein HR; Simonson T
    Proteins; 1998 May; 31(2):186-200. PubMed ID: 9593192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional Threading and Sliding of a Dissymmetrical Foldamer Helix on Dissymmetrical Axles.
    Wang X; Gan Q; Wicher B; Ferrand Y; Huc I
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4205-4209. PubMed ID: 30652404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle.
    Cui JS; Ba QK; Ke H; Valkonen A; Rissanen K; Jiang W
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7809-7814. PubMed ID: 29696797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Energy Transfer Modulation in a Dynamic Foldaxane: Proof-of-Principle of a Lifetime-Based Conformation Probe.
    Denisov SA; Gan Q; Wang X; Scarpantonio L; Ferrand Y; Kauffmann B; Jonusauskas G; Huc I; McClenaghan ND
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1328-33. PubMed ID: 26663612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach.
    Deshmukh MM; Bartolotti LJ; Gadre SR
    J Phys Chem A; 2008 Jan; 112(2):312-21. PubMed ID: 18085757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl rotation barriers in proteins from 2H relaxation data. Implications for protein structure.
    Xue Y; Pavlova MS; Ryabov YE; Reif B; Skrynnikov NR
    J Am Chem Soc; 2007 May; 129(21):6827-38. PubMed ID: 17488010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake.
    Ghosh P; Federwisch G; Kogej M; Schalley CA; Haase D; Saak W; Lützen A; Gschwind RM
    Org Biomol Chem; 2005 Aug; 3(15):2691-700. PubMed ID: 16032347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enforcing periodic secondary structures in hybrid peptides: a novel hybrid foldamer containing periodic gamma-turn motifs.
    Baruah PK; Sreedevi NK; Gonnade R; Ravindranathan S; Damodaran K; Hofmann HJ; Sanjayan GJ
    J Org Chem; 2007 Jan; 72(2):636-9. PubMed ID: 17221986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluxional Boron Clusters: From Theory to Reality.
    Pan S; Barroso J; Jalife S; Heine T; Asmis KR; Merino G
    Acc Chem Res; 2019 Sep; 52(9):2732-2744. PubMed ID: 31487150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing foldamer-foldamer interactions in solution: the roles of helix length and terminus functionality in promoting the self-association of aminoisobutyric acid oligomers.
    Pike SJ; Diemer V; Raftery J; Webb SJ; Clayden J
    Chemistry; 2014 Nov; 20(48):15981-90. PubMed ID: 25280242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase.
    Li G; Cui Q
    Biophys J; 2004 Feb; 86(2):743-63. PubMed ID: 14747312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.