BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32490462)

  • 1. Both metal-chelating and free radical-scavenging synthetic pentapeptides as efficient inhibitors of reactive oxygen species generation.
    Csire G; Canabady-Rochelle L; Averlant-Petit MC; Selmeczi K; Stefan L
    Metallomics; 2020 Aug; 12(8):1220-1229. PubMed ID: 32490462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.
    Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S
    Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers.
    Cao GJ; Jiang X; Zhang H; Zheng J; Croley TR; Yin JJ
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Oct; 35(4):223-238. PubMed ID: 29115913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2,3-diarylxanthones as strong scavengers of reactive oxygen and nitrogen species: a structure-activity relationship study.
    Santos CM; Freitas M; Ribeiro D; Gomes A; Silva AM; Cavaleiro JA; Fernandes E
    Bioorg Med Chem; 2010 Sep; 18(18):6776-84. PubMed ID: 20709556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species.
    Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP
    Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies on the antioxidant activity of p-coumaric acid.
    Kiliç I; Yeşiloğlu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():719-24. PubMed ID: 23892112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species.
    Murakami K; Haneda M; Qiao S; Naruse M; Yoshino M
    Toxicol In Vitro; 2007 Jun; 21(4):613-7. PubMed ID: 17267171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone.
    Bal-Demirci T; Şahin M; Kondakçı E; Özyürek M; Ülküseven B; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():866-72. PubMed ID: 25467658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemistry behind antioxidant capacity assays.
    Huang D; Ou B; Prior RL
    J Agric Food Chem; 2005 Mar; 53(6):1841-56. PubMed ID: 15769103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of psoralens on Fenton-like reaction generating reactive oxygen species.
    Aboul-Enein HY; Kladna A; Kruk I; Lichszteld K; Michalska T
    Biopolymers; 2003; 72(1):59-68. PubMed ID: 12400092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic studies on the antioxidant activity of ellagic acid.
    Kilic I; Yeşiloğlu Y; Bayrak Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():447-52. PubMed ID: 24813273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species and the central nervous system.
    Halliwell B
    J Neurochem; 1992 Nov; 59(5):1609-23. PubMed ID: 1402908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems.
    Smith BA; Teel AL; Watts RJ
    Environ Sci Technol; 2004 Oct; 38(20):5465-9. PubMed ID: 15543752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activity of recombinant human neuroglobin as an antioxidant and free radical scavenger.
    Li W; Wu Y; Ren C; Lu Y; Gao Y; Zheng X; Zhang C
    Proteins; 2011 Jan; 79(1):115-25. PubMed ID: 20938977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes.
    Mubarakshina MM; Ivanov BN
    Physiol Plant; 2010 Oct; 140(2):103-10. PubMed ID: 20553418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.