These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32490462)

  • 1. Both metal-chelating and free radical-scavenging synthetic pentapeptides as efficient inhibitors of reactive oxygen species generation.
    Csire G; Canabady-Rochelle L; Averlant-Petit MC; Selmeczi K; Stefan L
    Metallomics; 2020 Aug; 12(8):1220-1229. PubMed ID: 32490462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.
    Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S
    Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers.
    Cao GJ; Jiang X; Zhang H; Zheng J; Croley TR; Yin JJ
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Oct; 35(4):223-238. PubMed ID: 29115913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2,3-diarylxanthones as strong scavengers of reactive oxygen and nitrogen species: a structure-activity relationship study.
    Santos CM; Freitas M; Ribeiro D; Gomes A; Silva AM; Cavaleiro JA; Fernandes E
    Bioorg Med Chem; 2010 Sep; 18(18):6776-84. PubMed ID: 20709556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species.
    Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP
    Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies on the antioxidant activity of p-coumaric acid.
    Kiliç I; Yeşiloğlu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():719-24. PubMed ID: 23892112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species.
    Murakami K; Haneda M; Qiao S; Naruse M; Yoshino M
    Toxicol In Vitro; 2007 Jun; 21(4):613-7. PubMed ID: 17267171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone.
    Bal-Demirci T; Şahin M; Kondakçı E; Özyürek M; Ülküseven B; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():866-72. PubMed ID: 25467658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemistry behind antioxidant capacity assays.
    Huang D; Ou B; Prior RL
    J Agric Food Chem; 2005 Mar; 53(6):1841-56. PubMed ID: 15769103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of psoralens on Fenton-like reaction generating reactive oxygen species.
    Aboul-Enein HY; Kladna A; Kruk I; Lichszteld K; Michalska T
    Biopolymers; 2003; 72(1):59-68. PubMed ID: 12400092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic studies on the antioxidant activity of ellagic acid.
    Kilic I; Yeşiloğlu Y; Bayrak Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():447-52. PubMed ID: 24813273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species and the central nervous system.
    Halliwell B
    J Neurochem; 1992 Nov; 59(5):1609-23. PubMed ID: 1402908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems.
    Smith BA; Teel AL; Watts RJ
    Environ Sci Technol; 2004 Oct; 38(20):5465-9. PubMed ID: 15543752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activity of recombinant human neuroglobin as an antioxidant and free radical scavenger.
    Li W; Wu Y; Ren C; Lu Y; Gao Y; Zheng X; Zhang C
    Proteins; 2011 Jan; 79(1):115-25. PubMed ID: 20938977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes.
    Mubarakshina MM; Ivanov BN
    Physiol Plant; 2010 Oct; 140(2):103-10. PubMed ID: 20553418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.