BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32490468)

  • 21. Wet chemical functionalization of graphene.
    Hirsch A; Englert JM; Hauke F
    Acc Chem Res; 2013 Jan; 46(1):87-96. PubMed ID: 22946482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double-stranded DNA-graphene hybrid: preparation and anti-proliferative activity.
    Joseph D; Seo S; Williams DR; Geckeler KE
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3347-56. PubMed ID: 24556065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells.
    Geetha Bai R; Muthoosamy K; Shipton FN; Manickam S
    Ultrason Sonochem; 2017 May; 36():129-138. PubMed ID: 28069192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-pathogenic activity of graphene nanomaterials: A review.
    Seifi T; Kamali AR
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111509. PubMed ID: 33340933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    Langmuir; 2013 Nov; 29(46):14230-8. PubMed ID: 24144078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Boron Nitride Nanosheets by Exfoliation.
    Wang Z; Tang Z; Xue Q; Huang Y; Huang Y; Zhu M; Pei Z; Li H; Jiang H; Fu C; Zhi C
    Chem Rec; 2016 Jun; 16(3):1204-15. PubMed ID: 27062213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward combining graphene and QDs: assembling CdTe QDs to exfoliated graphite and nanographene in water.
    Katsukis G; Malig J; Schulz-Drost C; Leubner S; Jux N; Guldi DM
    ACS Nano; 2012 Mar; 6(3):1915-24. PubMed ID: 22352463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-Based Nanomaterials: Potential Tools for Neurorepair.
    Wang Q; Li YH; Jiang WJ; Zhao JG; Xiao BG; Zhang GX; Ma CG
    Curr Pharm Des; 2018; 24(1):56-61. PubMed ID: 28847305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic functionalization of graphene in dispersions.
    Quintana M; Vazquez E; Prato M
    Acc Chem Res; 2013 Jan; 46(1):138-48. PubMed ID: 22872046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Strategy for Liquid Exfoliation of Ultrathin Black Phosphorus Nanosheets.
    Yang G; Huang H; Xiao Z; Zhang C; Guo W; Ma T; Ma L; Chen Z; Deng Y
    J Biomed Nanotechnol; 2020 Apr; 16(4):548-552. PubMed ID: 32970986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.
    Park JS; Cho SM; Kim WJ; Park J; Yoo PJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):360-8. PubMed ID: 21207942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine.
    Joshi K; Mazumder B; Chattopadhyay P; Bora NS; Goyary D; Karmakar S
    Curr Drug Deliv; 2019; 16(3):195-214. PubMed ID: 30381073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in the field of transition metal dichalcogenides for biomedical applications.
    Agarwal V; Chatterjee K
    Nanoscale; 2018 Sep; 10(35):16365-16397. PubMed ID: 30151537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-modal label-free genosensor based on hemoglobin@gold nanocluster stabilized graphene nanosheets for the electrochemical detection of BCR/ABL fusion gene.
    Shamsipur M; Samandari L; Farzin L; Molaabasi F; Mousazadeh MH
    Talanta; 2020 Sep; 217():121093. PubMed ID: 32498906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of lignosulfonate into graphene-like 2D nanosheets: Self-assembly mechanism and their potential in biomedical and electrical applications.
    Wang M; Liu X; Song P; Wang X; Xu F; Zhang X
    Int J Biol Macromol; 2019 May; 128():621-628. PubMed ID: 30707996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions.
    León V; Rodriguez AM; Prieto P; Prato M; Vázquez E
    ACS Nano; 2014 Jan; 8(1):563-71. PubMed ID: 24380430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoupling rheology from particle concentration by charge modulation: Aqueous graphene-clay dispersions.
    Cullari LL; Yosefi G; Nativ-Roth E; Furó I; Regev O
    J Colloid Interface Sci; 2024 Feb; 655():863-875. PubMed ID: 37979292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colloidal stability of graphene in aqueous medium: a theoretical approach through molecular dynamics.
    Montes-Zavala I; Castrejón-González EO; González-Calderón JA; Rico-Ramírez V
    J Mol Model; 2023 Jun; 29(7):220. PubMed ID: 37389699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging frontiers of graphene in biomedicine.
    Byun J
    J Microbiol Biotechnol; 2015 Feb; 25(2):145-51. PubMed ID: 25563423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application.
    Zhang Q; Wu Z; Li N; Pu Y; Wang B; Zhang T; Tao J
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1363-1375. PubMed ID: 28532014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.