These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32490662)

  • 1. Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H
    Park M; Gu M; Kim BS
    ACS Nano; 2020 Jun; 14(6):6812-6822. PubMed ID: 32490662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.
    You B; Jiang N; Liu X; Sun Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9913-7. PubMed ID: 27417546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional Thin Film Hybrid Electrodes with MoS
    Ahn E; Kim BS
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8688-8695. PubMed ID: 28240028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-valence metal sites induced by heterostructure engineering for promoting 5-hydroxymethylfurfural electrooxidation and hydrogen generation.
    Shang N; Li W; Wu Q; Li H; Wang H; Wang C; Bai G
    J Colloid Interface Sci; 2024 Apr; 659():621-628. PubMed ID: 38198939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization.
    You B; Liu X; Jiang N; Sun Y
    J Am Chem Soc; 2016 Oct; 138(41):13639-13646. PubMed ID: 27652996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting.
    Weidner J; Barwe S; Sliozberg K; Piontek S; Masa J; Apfel UP; Schuhmann W
    Beilstein J Org Chem; 2018; 14():1436-1445. PubMed ID: 29977407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion controlled multilayer electrocatalysts via graphene oxide nanosheets of varying sizes.
    Gu M; Choi J; Lee T; Park M; Shin IS; Hong J; Lee HW; Kim BS
    Nanoscale; 2018 Aug; 10(34):16159-16168. PubMed ID: 30118131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Synergistic Ni
    Yang S; Guo Y; Zhao Y; Zhang L; Shen H; Wang J; Li J; Wu C; Wang W; Cao Y; Zhuo S; Zhang Q; Zhang H
    Small; 2022 Jun; 18(24):e2201306. PubMed ID: 35570703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the surface polarization effect via Ni/NiMoO
    Liu G; Sun Z; Liu D; Li Y; Zhang W
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1012-1020. PubMed ID: 36152614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Coral-Like Ni
    Zhang J; Li Y; Zhu T; Wang Y; Cui J; Wu J; Xu H; Shu X; Qin Y; Zheng H; Ajayan PM; Zhang Y; Wu Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31330-31339. PubMed ID: 30136576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional Ni Foam Supported TiO
    Wei M; Li M; Gao Q; Cai X; Zhang S; Fang Y; Peng F; Yang S
    Small; 2024 Mar; 20(9):e2305906. PubMed ID: 37857591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SILAR deposited iron phosphate as a bifunctional electrocatalyst for efficient water splitting.
    Babar PT; Lokhande AC; Shim HJ; Gang MG; Pawar BS; Pawar SM; Kim JH
    J Colloid Interface Sci; 2019 Jan; 534():350-356. PubMed ID: 30243176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting.
    Duan J; Chen S; Vasileff A; Qiao SZ
    ACS Nano; 2016 Sep; 10(9):8738-45. PubMed ID: 27622580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry of Multilayer Electrodes: From the Basics to Energy Applications.
    Gu M; Kim BS
    Acc Chem Res; 2021 Jan; 54(1):57-69. PubMed ID: 33172254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in energy-saving electrocatalytic hydrogen production
    Gao T; An Q; Tang X; Yue Q; Zhang Y; Li B; Li P; Jin Z
    Phys Chem Chem Phys; 2024 Jul; 26(29):19606-19624. PubMed ID: 39011574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting.
    Barati Darband G; Aliofkhazraei M; Rouhaghdam AS
    J Colloid Interface Sci; 2019 Jul; 547():407-420. PubMed ID: 30999075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoration of Ru/RuO
    Fan Y; Zhang X; Zhang Y; Xie X; Ding J; Cai J; Li B; Lv H; Liu L; Zhu M; Zheng X; Cai Q; Liu Y; Lu S
    J Colloid Interface Sci; 2021 Dec; 604():508-516. PubMed ID: 34274714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphdiyne-Supported NiCo
    Xue Y; Zuo Z; Li Y; Liu H; Li Y
    Small; 2017 Aug; 13(31):. PubMed ID: 28612495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional hierarchical frameworks based on MoS₂ nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution.
    Zhou W; Zhou K; Hou D; Liu X; Li G; Sang Y; Liu H; Li L; Chen S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21534-40. PubMed ID: 25347618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.