These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 32490664)

  • 41. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces.
    Song Z; Lu M; Chen X
    ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces.
    Sun J; Weisensee PB
    Soft Matter; 2019 Jun; 15(24):4808-4817. PubMed ID: 31089647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced condensation on lubricant-impregnated nanotextured surfaces.
    Anand S; Paxson AT; Dhiman R; Smith JD; Varanasi KK
    ACS Nano; 2012 Nov; 6(11):10122-9. PubMed ID: 23030619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation.
    Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces.
    Hauer L; Wong WSY; Donadei V; Hegner KI; Kondic L; Vollmer D
    ACS Nano; 2021 Mar; 15(3):4658-4668. PubMed ID: 33647197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microscale Confinement and Wetting Contrast Enable Enhanced and Tunable Condensation.
    Yan X; Chen F; Zhao C; Wang X; Li L; Khodakarami S; Fazle Rabbi K; Li J; Hoque MJ; Chen F; Feng J; Miljkovic N
    ACS Nano; 2022 Jun; 16(6):9510-9522. PubMed ID: 35696260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sliding and rolling of yield stress fluid droplets on highly slippery lubricated surfaces.
    Carneri M; Ferraro D; Azarpour A; Meggiolaro A; Cremaschini S; Filippi D; Pierno M; Zanchetta G; Mistura G
    J Colloid Interface Sci; 2023 Aug; 644():487-495. PubMed ID: 37146485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanically durable and long-term repairable flexible lubricant-infused monomer for enhancing water collection efficiency by manipulating droplet coalescence and sliding.
    Zhou H; Jing X; Guo Z
    Nanoscale Adv; 2020 Apr; 2(4):1473-1482. PubMed ID: 36132304
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brushed lubricant-impregnated surfaces (BLIS) for long-lasting high condensation heat transfer.
    Seo D; Shim J; Lee C; Nam Y
    Sci Rep; 2020 Feb; 10(1):2959. PubMed ID: 32076000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water Drop Evaporation on Slippery Liquid-Infused Porous Surfaces (SLIPS): Effect of Lubricant Thickness, Viscosity, Ridge Height, and Pattern Geometry.
    Üçüncüoğlu R; Erbil HY
    Langmuir; 2023 May; 39(18):6514-6528. PubMed ID: 37103333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wetting ridges on slippery liquid-infused porous surfaces.
    Tran HH; Lee D; Riassetto D
    Rep Prog Phys; 2023 May; 86(6):. PubMed ID: 36990071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.