These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32490676)

  • 1. On the Intrinsically Low Quantum Yields of Pyrimidine DNA Photodamages: Evaluating the Reactivity of the Corresponding Minimum Energy Crossing Points.
    Giussani A; Worth GA
    J Phys Chem Lett; 2020 Jul; 11(13):4984-4989. PubMed ID: 32490676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Electronic and Structural Factors Control Cyclobutane Pyrimidine Dimer and 6-4 Thymine-Thymine Photodimerization in a DNA Duplex.
    Conti I; Martínez-Fernández L; Esposito L; Hofinger S; Nenov A; Garavelli M; Improta R
    Chemistry; 2017 Oct; 23(60):15177-15188. PubMed ID: 28809462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: why are thymines more reactive?
    Durbeej B; Eriksson LA
    Photochem Photobiol; 2003 Aug; 78(2):159-67. PubMed ID: 12945584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical insight into the intrinsic ultrafast formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: thymine versus cytosine.
    Serrano-Pérez JJ; González-Ramírez I; Coto PB; Merchán M; Serrano-Andrés L
    J Phys Chem B; 2008 Nov; 112(45):14096-8. PubMed ID: 18928316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced formation mechanism of the thymine-thymine (6-4) adduct.
    Giussani A; Serrano-Andrés L; Merchán M; Roca-Sanjuán D; Garavelli M
    J Phys Chem B; 2013 Feb; 117(7):1999-2004. PubMed ID: 23339629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.
    Mendieta-Moreno JI; Trabada DG; Mendieta J; Lewis JP; Gómez-Puertas P; Ortega J
    J Phys Chem Lett; 2016 Nov; 7(21):4391-4397. PubMed ID: 27768300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM studies reveal pathways leading to the quenching of the formation of thymine dimer photoproduct by flanking bases.
    Lee W; Matsika S
    Phys Chem Chem Phys; 2015 Apr; 17(15):9927-35. PubMed ID: 25776223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved study of thymine dimer formation.
    Marguet S; Markovitsi D
    J Am Chem Soc; 2005 Apr; 127(16):5780-1. PubMed ID: 15839663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facially-selective thymine-thymine photodimerization in TTT triads.
    Neelakandan PP; Pan Z; Hariharan M; Lewis FD
    Photochem Photobiol Sci; 2012 Jun; 11(6):889-92. PubMed ID: 22580641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength dependence (150-290 nm) of the formation of the cyclobutane dimer and the (6-4) photoproduct of thymine.
    Yamada H; Hieda K
    Photochem Photobiol; 1992 Apr; 55(4):541-8. PubMed ID: 1620731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of DNA backbone on the triplet mechanism of UV-induced thymine-thymine (6-4) dimer formation.
    Wang X; Yu H
    J Mol Model; 2018 Oct; 24(11):319. PubMed ID: 30353277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical quenching in competition with the formation of cyclobutane pyrimidine dimers in DNA photolesion.
    Zhao H; Liu K; Song D; Su H
    J Phys Chem A; 2014 Oct; 118(39):9105-12. PubMed ID: 24964272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of DNA photodamage: the role of exciton localization.
    Rössle S; Friedrichs J; Frank I
    Chemphyschem; 2010 Jun; 11(9):2011-5. PubMed ID: 20449863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thymine dimerization in DNA model systems: cyclobutane photolesion is predominantly formed via the singlet channel.
    Schreier WJ; Kubon J; Regner N; Haiser K; Schrader TE; Zinth W; Clivio P; Gilch P
    J Am Chem Soc; 2009 Apr; 131(14):5038-9. PubMed ID: 19309140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of the Triplet Biradical Intermediate of 5-Methylcytosine Enhances Cyclobutane Pyrimidine Dimer (CPD) Formation in DNA.
    Lee W; Matsika S
    Chemistry; 2020 Nov; 26(62):14181-14186. PubMed ID: 32809239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer.
    Horikoshi N; Tachiwana H; Kagawa W; Osakabe A; Matsumoto S; Iwai S; Sugasawa K; Kurumizaka H
    Biochem Biophys Res Commun; 2016 Feb; 471(1):117-22. PubMed ID: 26837048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities and Differences between Thymine(6-4)Thymine/Cytosine DNA Lesion Repairs by Photolyases.
    Dokainish HM; Kitao A
    J Phys Chem B; 2018 Sep; 122(36):8537-8547. PubMed ID: 30124048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling thymine photodimerizations in DNA: mechanism and correlation diagrams.
    Blancafort L; Migani A
    J Am Chem Soc; 2007 Nov; 129(47):14540-1. PubMed ID: 17983225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms of targeted frameshift mutations--insertion formation under error-prone or SOS synthesis of DNA containing CIS-SYN cyncyclobutane thymine dimers].
    Grebneva EA
    Mol Biol (Mosk); 2014; 48(4):531-42. PubMed ID: 25842840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thymine dimerization in DNA is an ultrafast photoreaction.
    Schreier WJ; Schrader TE; Koller FO; Gilch P; Crespo-Hernández CE; Swaminathan VN; Carell T; Zinth W; Kohler B
    Science; 2007 Feb; 315(5812):625-9. PubMed ID: 17272716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.