These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32491128)

  • 1. An Efficient Skin Cancer Diagnostic System Using Bendlet Transform and Support Vector Machine.
    S P; Tr GB
    An Acad Bras Cienc; 2020; 92(1):e20190554. PubMed ID: 32491128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanoma recognition in dermoscopy images using lesion's peripheral region information.
    Tajeddin NZ; Asl BM
    Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification.
    Wahba MA; Ashour AS; Guo Y; Napoleon SA; Elnaby MMA
    Comput Methods Programs Biomed; 2018 Oct; 165():163-174. PubMed ID: 30337071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusing fine-tuned deep features for skin lesion classification.
    Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C
    Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines.
    Jaworek-Korjakowska J
    Biomed Res Int; 2016; 2016():4381972. PubMed ID: 27382567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
    Premaladha J; Ravichandran KS
    J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
    R D S; A S
    Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features.
    Yu Z; Jiang X; Zhou F; Qin J; Ni D; Chen S; Lei B; Wang T
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1006-1016. PubMed ID: 30130171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.
    Garcia-Arroyo JL; Garcia-Zapirain B
    Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification.
    Khan MA; Akram T; Sharif M; Shahzad A; Aurangzeb K; Alhussein M; Haider SI; Altamrah A
    BMC Cancer; 2018 Jun; 18(1):638. PubMed ID: 29871593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation.
    Oliveira RB; Pereira AS; Tavares JMRS
    Comput Methods Programs Biomed; 2017 Oct; 149():43-53. PubMed ID: 28802329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodological approach to the classification of dermoscopy images.
    Celebi ME; Kingravi HA; Uddin B; Iyatomi H; Aslandogan YA; Stoecker WV; Moss RH
    Comput Med Imaging Graph; 2007 Sep; 31(6):362-73. PubMed ID: 17387001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of melanoma using broad extraction of features from digital images.
    Jafari MH; Samavi S; Karimi N; Soroushmehr SM; Ward K; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1357-1360. PubMed ID: 28268577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanoma detection by analysis of clinical images using convolutional neural network.
    Nasr-Esfahani E; Samavi S; Karimi N; Soroushmehr SM; Jafari MH; Ward K; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1373-1376. PubMed ID: 28268581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting anomalous growth of skin lesion using threshold-based segmentation algorithm and Fuzzy K-Nearest Neighbor classifier.
    Sivaraj S; Malmathanraj R; Palanisamy P
    J Cancer Res Ther; 2020; 16(1):40-52. PubMed ID: 32362608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep bag-of-features model for the classification of melanomas in dermoscopy images.
    Sabbaghi S; Aldeen M; Garnavi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1369-1372. PubMed ID: 28268580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution invariant wavelet features of melanoma studied by SVM classifiers.
    Surówka G; Ogorzalek M
    PLoS One; 2019; 14(2):e0211318. PubMed ID: 30726260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hair detection and lesion segmentation in dermoscopic images using domain knowledge.
    Pathan S; Prabhu KG; Siddalingaswamy PC
    Med Biol Eng Comput; 2018 Nov; 56(11):2051-2065. PubMed ID: 29761315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.