BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32491823)

  • 1. Uncovering the Structural Evolution in Na-Excess Layered Cathodes for Rational Use of an Anionic Redox Reaction.
    Choi G; Lee J; Kim D
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29203-29211. PubMed ID: 32491823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Origin of Nonhysteretic Oxygen Capacity in Conventional Na-Excess Layered Oxides.
    Choi G; Park S; Koo S; Lee J; Kwon D; Kim D
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46620-46626. PubMed ID: 34546710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co
    Li XL; Bao J; Shadike Z; Wang QC; Yang XQ; Zhou YN; Sun D; Fang F
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):22026-22034. PubMed ID: 34378281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of Na(Li
    Kim D; Cho M; Cho K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28635039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Chemical Distortion on the Hysteretic Oxygen Capacity in Li-Excess Layered Oxides.
    Kim H; Yoon S; Koo S; Lee J; Kim J; Cho M; Kim D
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9057-9065. PubMed ID: 35156804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Thermodynamic Understandings in Mn-Based Sodium Layered Oxides during Anionic Redox.
    Kang SM; Kim D; Lee KS; Kim MS; Jin A; Park JH; Ahn CY; Jeon TY; Jung YH; Yu SH; Mun J; Sung YE
    Adv Sci (Weinh); 2020 Aug; 7(16):2001263. PubMed ID: 32832368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-Voltage-Range Oxygen Redox in P2-Layered Cathode Materials for Sodium-Ion Batteries.
    Li XL; Wang T; Yuan Y; Yue XY; Wang QC; Wang JY; Zhong J; Lin RQ; Yao Y; Wu XJ; Yu XQ; Fu ZW; Xia YY; Yang XQ; Liu T; Amine K; Shadike Z; Zhou YN; Lu J
    Adv Mater; 2021 Apr; 33(13):e2008194. PubMed ID: 33645858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries.
    Zhang X; Qiao Y; Guo S; Jiang K; Xu S; Xu H; Wang P; He P; Zhou H
    Adv Mater; 2019 Jul; 31(27):e1807770. PubMed ID: 31074542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realizing High-Performance Cathodes with Cationic and Anionic Redox Reactions in High-Sodium-Content P2-Type Oxides for Sodium-Ion Batteries.
    Liu Q; Zheng W; Liu G; Hu J; Zhang X; Han N; Wang Z; Luo J; Fransaer J; Lu Z
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36757842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining Factors in Triggering Hysteretic Oxygen Capacities in Lithium-Excess Sodium Layered Oxides.
    Park S; Lee J; Kim H; Chioi G; Koo S; Lee J; Cho M; Kim D
    ACS Appl Mater Interfaces; 2022 May; 14(17):19515-19523. PubMed ID: 35452216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodium-Ion Battery Electrode.
    Cheng C; Ding M; Yan T; Jiang J; Mao J; Feng X; Chan TS; Li N; Zhang L
    Small Methods; 2022 Mar; 6(3):e2101524. PubMed ID: 35084117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries.
    Zhang L; Guan C; Zheng J; Li H; Li S; Li S; Lai Y; Zhang Z
    Sci Bull (Beijing); 2023 Jan; 68(2):180-191. PubMed ID: 36658032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Function of Cation-Doping to Activate Cationic and Anionic Redox in a Mn-Based Sodium-Layered Oxide Cathode.
    Ni Q; Zhao Y; Yuan X; Li J; Jin H
    Small; 2022 Jun; 18(24):e2200289. PubMed ID: 35585688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study on Y-doped Na
    Yin H; Huang J; Luo N; Zhang Y; Huang S
    Phys Chem Chem Phys; 2022 Jul; 24(26):16183-16192. PubMed ID: 35749066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries.
    Jia M; Li H; Qiao Y; Wang L; Cao X; Cabana J; Zhou H
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38249-38255. PubMed ID: 32803951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Anionic Redox Stability of P2-Na
    Huang Y; Zhu Y; Nie A; Fu H; Hu Z; Sun X; Haw SC; Chen JM; Chan TS; Yu S; Sun G; Jiang G; Han J; Luo W; Huang Y
    Adv Mater; 2022 Mar; 34(9):e2105404. PubMed ID: 34961966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Anionic Redox Chemistry in a Prototype Na-Rich Layered Oxide.
    Hu Y; Liu T; Cheng C; Yan Y; Ding M; Chan TS; Guo J; Zhang L
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3617-3623. PubMed ID: 31885253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes.
    Guo YJ; Wang PF; Niu YB; Zhang XD; Li Q; Yu X; Fan M; Chen WP; Yu Y; Liu X; Meng Q; Xin S; Yin YX; Guo YG
    Nat Commun; 2021 Sep; 12(1):5267. PubMed ID: 34489437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives.
    Ren H; Li Y; Ni Q; Bai Y; Zhao H; Wu C
    Adv Mater; 2022 Feb; 34(8):e2106171. PubMed ID: 34783392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating Cation Interactions for Zero-Strain and High-Voltage P2-type Na
    Zou P; Yao L; Wang C; Lee SJ; Li T; Xin HL
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202304628. PubMed ID: 37139583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.