BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 32491839)

  • 1. Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis.
    Clevenger AL; Stolley RM; Aderibigbe J; Louie J
    Chem Rev; 2020 Jul; 120(13):6124-6196. PubMed ID: 32491839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Access to 2'-substituted binaphthyl monoalcohols via complementary nickel-catalyzed Kumada coupling reactions under mild conditions: key role of a P,O ligand.
    Handa S; Mathota Arachchige YL; Slaughter LM
    J Org Chem; 2013 Jun; 78(11):5694-9. PubMed ID: 23672533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings.
    Newman-Stonebraker SH; Wang JY; Jeffrey PD; Doyle AG
    J Am Chem Soc; 2022 Oct; 144(42):19635-19648. PubMed ID: 36250758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modular, air-stable nickel precatalyst.
    Shields JD; Gray EE; Doyle AG
    Org Lett; 2015 May; 17(9):2166-9. PubMed ID: 25886092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects.
    Wu K; Doyle AG
    Nat Chem; 2017 Aug; 9(8):779-784. PubMed ID: 28754948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nickel phosphine complex as a fast and efficient hydrogen production catalyst.
    Gan L; Groy TL; Tarakeshwar P; Mazinani SK; Shearer J; Mujica V; Jones AK
    J Am Chem Soc; 2015 Jan; 137(3):1109-15. PubMed ID: 25562523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.
    Tollefson EJ; Hanna LE; Jarvo ER
    Acc Chem Res; 2015 Aug; 48(8):2344-53. PubMed ID: 26197033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Dendrimers with a Bidentate Phosphine Core Ligand Having Carboxy Groups at the Peripheral Layer and Their Application to Aqueous Media Cross-Coupling Reactions.
    Fujita K; Hattori H
    Chem Pharm Bull (Tokyo); 2016; 64(7):1067-72. PubMed ID: 27373669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel-catalyzed monosubstitution of polyfluoroarenes with organozinc reagents using alkoxydiphosphine ligand.
    Nakamura Y; Yoshikai N; Ilies L; Nakamura E
    Org Lett; 2012 Jul; 14(13):3316-9. PubMed ID: 22691135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd(quinoline-8-carboxylate)(2) as a low-priced, phosphine-free catalyst for Heck and Suzuki reactions.
    Cui X; Li J; Zhang ZP; Fu Y; Liu L; Guo QX
    J Org Chem; 2007 Nov; 72(24):9342-5. PubMed ID: 17973432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High efficiency of cavity-based triaryl-phosphines in nickel-catalysed Kumada-Tamao-Corriu cross-coupling.
    Monnereau L; Sémeril D; Matt D
    Chem Commun (Camb); 2011 Jun; 47(23):6626-8. PubMed ID: 21544285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C-N Cross-Coupling.
    Liu RY; Dennis JM; Buchwald SL
    J Am Chem Soc; 2020 Mar; 142(9):4500-4507. PubMed ID: 32040909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel Catalysis: Synergy between Method Development and Total Synthesis.
    Standley EA; Tasker SZ; Jensen KL; Jamison TF
    Acc Chem Res; 2015 May; 48(5):1503-14. PubMed ID: 25905431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion effect in the diastereoselective formation of bischelated Ni(II) complexes with a novel, chiral phosphine derived from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
    O'Reilly M; Pattacini R; Braunstein P
    Dalton Trans; 2009 Aug; (31):6092-5. PubMed ID: 20449101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous hydrogenation and isomerization of 1-octene catalyzed by nickel(II) complexes with bidentate diarylphosphane ligands.
    Mooibroek TJ; Wenker EC; Smit W; Mutikainen I; Lutz M; Bouwman E
    Inorg Chem; 2013 Jul; 52(14):8190-201. PubMed ID: 23822166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel-iminophosphine-catalyzed [4+2] cycloaddition of enones with allenes: synthesis of highly substituted dihydropyrans.
    Sako S; Kurahashi T; Matsubara S
    Chem Commun (Camb); 2011 Jun; 47(21):6150-2. PubMed ID: 21519613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small Phosphine Ligands Enable Selective Oxidative Addition of Ar-O over Ar-Cl Bonds at Nickel(0).
    Entz ED; Russell JEA; Hooker LV; Neufeldt SR
    J Am Chem Soc; 2020 Sep; 142(36):15454-15463. PubMed ID: 32805116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-dependent scope and divergent mechanistic behavior in nickel-catalyzed reductive couplings of aldehydes and alkynes.
    Mahandru GM; Liu G; Montgomery J
    J Am Chem Soc; 2004 Mar; 126(12):3698-9. PubMed ID: 15038707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylene/allyl monomer cooligomerization by nickel/phosphine-sulfonate catalysts.
    Ito S; Ota Y; Nozaki K
    Dalton Trans; 2012 Dec; 41(45):13807-9. PubMed ID: 23059906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral allene-containing phosphines in asymmetric catalysis.
    Cai F; Pu X; Qi X; Lynch V; Radha A; Ready JM
    J Am Chem Soc; 2011 Nov; 133(45):18066-9. PubMed ID: 21972824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.