These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery. Ding Y; Sun D; Wang GL; Yang HG; Xu HF; Chen JH; Xie Y; Wang ZQ Int J Nanomedicine; 2015; 10():6199-214. PubMed ID: 26491292 [TBL] [Abstract][Full Text] [Related]
44. Tumor-Homing Cell-Penetrating Peptide Linked to Colloidal Mesoporous Silica Encapsulated (-)-Epigallocatechin-3-gallate as Drug Delivery System for Breast Cancer Therapy in Vivo. Ding J; Yao J; Xue J; Li R; Bao B; Jiang L; Zhu JJ; He Z ACS Appl Mater Interfaces; 2015 Aug; 7(32):18145-55. PubMed ID: 26225796 [TBL] [Abstract][Full Text] [Related]
45. A C-terminal peptide of TFPI-1 facilitates cytosolic delivery of nucleic acid cargo into mammalian cells. Fazil MHUT; Chalasani MLS; Choong YK; Schmidtchen A; Verma NK; Saravanan R Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183093. PubMed ID: 31672541 [TBL] [Abstract][Full Text] [Related]
46. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. Kenien R; Shen WC; Zaro JL J Drug Target; 2012 Nov; 20(9):793-800. PubMed ID: 22994388 [TBL] [Abstract][Full Text] [Related]
47. Self-assembled peptide nanoparticles for efficient delivery of methotrexate into cancer cells. Zakeri-Milani P; Shirani A; Nokhodchi A; Mussa Farkhani S; Mohammadi S; Shahbazi Mojarrad J; Mahmoudian M; Gholikhani T; Farshbaf M; Valizadeh H Drug Dev Ind Pharm; 2020 Apr; 46(4):521-530. PubMed ID: 32116040 [TBL] [Abstract][Full Text] [Related]
48. The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery. Luo Z; Cao XW; Li C; Wu MD; Yang XZ; Zhao J; Wang FJ J Pept Sci; 2016 Nov; 22(11-12):689-699. PubMed ID: 27739168 [TBL] [Abstract][Full Text] [Related]
49. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Wang Y; Zhao L; Xiao Q; Jiang L; He M; Bai X; Ma M; Jiao X; Wei M Gynecol Oncol; 2016 Jun; 141(3):592-601. PubMed ID: 26644266 [TBL] [Abstract][Full Text] [Related]
50. Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro. Wang K; Fan H; Chen Q; Ma G; Zhu M; Zhang X; Zhang Y; Yu J Anticancer Drugs; 2015 Jan; 26(1):15-24. PubMed ID: 25229889 [TBL] [Abstract][Full Text] [Related]
51. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. Pastorino JG; Shulga N; Hoek JB J Biol Chem; 2002 Mar; 277(9):7610-8. PubMed ID: 11751859 [TBL] [Abstract][Full Text] [Related]
52. The antimetastatic breast cancer activity of the viral protein-derived peptide vCPP2319 as revealed by cellular biomechanics. Oliveira FD; Cavaco M; Figueira TN; Valle J; Neves V; Andreu D; Gaspar D; Castanho MARB FEBS J; 2022 Mar; 289(6):1603-1624. PubMed ID: 34679257 [TBL] [Abstract][Full Text] [Related]
53. MicroRNA delivery with osmotic polysorbitol-based transporter suppresses breast cancer cell proliferation. Muthiah M; Islam MA; Lee HJ; Moon MJ; Cho CS; Park IK Int J Biol Macromol; 2015 Jan; 72():1237-43. PubMed ID: 25450545 [TBL] [Abstract][Full Text] [Related]
54. Enhanced intracellular delivery using arginine-rich peptides by the addition of penetration accelerating sequences (Pas). Takayama K; Nakase I; Michiue H; Takeuchi T; Tomizawa K; Matsui H; Futaki S J Control Release; 2009 Sep; 138(2):128-33. PubMed ID: 19465072 [TBL] [Abstract][Full Text] [Related]
55. Tumor targeting and microenvironment-responsive multifunctional fusion protein for pro-apoptotic peptide delivery. Yin J; Liu D; Bao L; Wang Q; Chen Y; Hou S; Yue Y; Yao W; Gao X Cancer Lett; 2019 Jun; 452():38-50. PubMed ID: 30904618 [TBL] [Abstract][Full Text] [Related]
56. miRNA-Specific Unlocking of Drug-Loaded Metal-Organic Framework Nanoparticles: Targeted Cytotoxicity toward Cancer Cells. Chen WH; Luo GF; Sohn YS; Nechushtai R; Willner I Small; 2019 Apr; 15(17):e1900935. PubMed ID: 30920730 [TBL] [Abstract][Full Text] [Related]
57. Oligoarginine-Bearing Tandem Repeat Penetration-Accelerating Sequence Delivers Protein to Cytosol via Caveolae-Mediated Endocytosis. Okuda A; Tahara S; Hirose H; Takeuchi T; Nakase I; Ono A; Takehashi M; Tanaka S; Futaki S Biomacromolecules; 2019 May; 20(5):1849-1859. PubMed ID: 30893557 [TBL] [Abstract][Full Text] [Related]
58. The role of miR-125b-mitochondria-caspase-3 pathway in doxorubicin resistance and therapy in human breast cancer. Xie X; Hu Y; Xu L; Fu Y; Tu J; Zhao H; Zhang S; Hong R; Gu X Tumour Biol; 2015 Sep; 36(9):7185-94. PubMed ID: 25894378 [TBL] [Abstract][Full Text] [Related]
59. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene. Li LQ; Yang Y; Chen H; Zhang L; Pan D; Xie WJ Cancer Biomark; 2016 Jun; 17(1):75-81. PubMed ID: 27314295 [TBL] [Abstract][Full Text] [Related]
60. The use of electronic-neutral penetrating peptides cyclosporin A to deliver pro-apoptotic peptide: A possibly better choice than positively charged TAT. Gao W; Yang X; Lin Z; He B; Mei D; Wang D; Zhang H; Zhang H; Dai W; Wang X; Zhang Q J Control Release; 2017 Sep; 261():174-186. PubMed ID: 28662902 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]