These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32491856)

  • 1. Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians.
    Krämer M; Dohmen PM; Xie W; Holub D; Christensen AS; Elstner M
    J Chem Theory Comput; 2020 Jul; 16(7):4061-4070. PubMed ID: 32491856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Charge Transport in Organic Semiconductors Using Neural Network Based Hamiltonians and Forces.
    Dohmen PM; Krämer M; Reiser P; Friederich P; Elstner M; Xie W
    J Chem Theory Comput; 2023 Jul; 19(13):3825-3838. PubMed ID: 37341096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials.
    Kranz JJ; Elstner M
    J Chem Theory Comput; 2016 Sep; 12(9):4209-21. PubMed ID: 27434173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network-Based Frenkel Hamiltonian and Gradients.
    Ghalami F; Dohmen PM; Krämer M; Elstner M; Xie W
    J Chem Theory Comput; 2024 Jul; 20(14):6160-6174. PubMed ID: 38976696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton diffusion in amorphous organic semiconductors: Reducing simulation overheads with machine learning.
    Wechwithayakhlung C; Weal GR; Kaneko Y; Hume PA; Hodgkiss JM; Packwood DM
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonadiabatic Exciton Dynamics and Energy Gradients in the Framework of FMO-LC-TDDFTB.
    Einsele R; Mitrić R
    J Chem Theory Comput; 2024 Aug; 20(15):6587-6603. PubMed ID: 39051619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling charge transport in organic photovoltaic materials.
    Nelson J; Kwiatkowski JJ; Kirkpatrick J; Frost JM
    Acc Chem Res; 2009 Nov; 42(11):1768-78. PubMed ID: 19848409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems.
    Popp W; Brey D; Binder R; Burghardt I
    Annu Rev Phys Chem; 2021 Apr; 72():591-616. PubMed ID: 33636997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors.
    Xie W; Holub D; Kubař T; Elstner M
    J Chem Theory Comput; 2020 Apr; 16(4):2071-2084. PubMed ID: 32176844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of exciton couplings based on density functional tight-binding coupled to state-interaction state-averaged ensemble-referenced Kohn-Sham approach.
    Kim TI; Lee IS; Kim H; Min SK
    J Chem Phys; 2023 Jan; 158(4):044106. PubMed ID: 36725518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Effects on Hole Transport in Amorphous Organic Semiconductors: a Combined QM/MM and kMC Study.
    Deniz Özdemir A; Inanlou S; Symalla F; Xie W; Wenzel W; Elstner M
    J Chem Theory Comput; 2023 Jul; 19(13):3849-3860. PubMed ID: 37382923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Model of Charge Mobilities in Organic Semiconductor Small Molecules with Force-Matched Potentials.
    Dantanarayana V; Nematiaram T; Vong D; Anthony JE; Troisi A; Nguyen Cong K; Goldman N; Faller R; Moulé AJ
    J Chem Theory Comput; 2020 Jun; 16(6):3494-3503. PubMed ID: 32401495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
    Wu G; Li Z; Zhang X; Lu G
    J Phys Chem Lett; 2014 Aug; 5(15):2649-56. PubMed ID: 26277958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet Exciton Diffusion in Organic Crystals Based on Marcus Transfer Rates.
    Stehr V; Fink RF; Engels B; Pflaum J; Deibel C
    J Chem Theory Comput; 2014 Mar; 10(3):1242-55. PubMed ID: 26580193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation.
    Shuai Z; Geng H; Xu W; Liao Y; André JM
    Chem Soc Rev; 2014 Apr; 43(8):2662-79. PubMed ID: 24394992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Davydov-type excitonic effects on the absorption spectra of parallel-stacked and herringbone aggregates of pentacene: Time-dependent density-functional theory and time-dependent density-functional tight binding.
    Darghouth AAMHM; Correa GC; Juillard S; Casida ME; Humeniuk A; Mitrić R
    J Chem Phys; 2018 Oct; 149(13):134111. PubMed ID: 30292200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the molecular ordering, paracrystallinity, and charge mobilities of oligomers in different crystalline phases.
    Yavuz I; Martin BN; Park J; Houk KN
    J Am Chem Soc; 2015 Mar; 137(8):2856-66. PubMed ID: 25658235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes.
    Nan G; Wang L; Yang X; Shuai Z; Zhao Y
    J Chem Phys; 2009 Jan; 130(2):024704. PubMed ID: 19154047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton/Charge-Transfer Electronic Couplings in Organic Semiconductors.
    Difley S; Van Voorhis T
    J Chem Theory Comput; 2011 Mar; 7(3):594-601. PubMed ID: 26596293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.