These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32491886)

  • 41. Multi-layered greedy network-growing algorithm: extension of greedy network-growing algorithm to multi-layered networks.
    Kamimura R
    Int J Neural Syst; 2004 Feb; 14(1):9-26. PubMed ID: 15034944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identifying influential nodes based on network representation learning in complex networks.
    Wei H; Pan Z; Hu G; Zhang L; Yang H; Li X; Zhou X
    PLoS One; 2018; 13(7):e0200091. PubMed ID: 29985931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of multiple influential spreaders on networks by percolation under the SIR model.
    Li X; Zhang X; Zhao C; Duan X
    Chaos; 2021 May; 31(5):051104. PubMed ID: 34240935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition.
    Liu Y; Tang M; Zhou T; Younghae Do
    Sci Rep; 2015 May; 5():9602. PubMed ID: 25946319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identifying highly influential nodes in multilayer networks based on global propagation.
    Li X; Zhang X; Zhao C; Yi D; Li G
    Chaos; 2020 Jun; 30(6):061107. PubMed ID: 32611121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extended methods for influence maximization in dynamic networks.
    Murata T; Koga H
    Comput Soc Netw; 2018; 5(1):8. PubMed ID: 30370206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems.
    Wang Y; Li X; Ruiz R; Sui S
    IEEE Trans Cybern; 2018 May; 48(5):1553-1566. PubMed ID: 28600270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved Local Search with Momentum for Bayesian Networks Structure Learning.
    Liu X; Gao X; Wang Z; Ru X
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34203696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential theory for directed networks.
    Zhang QM; Lü L; Wang WQ; Zhu YX; Zhou T
    PLoS One; 2013; 8(2):e55437. PubMed ID: 23408979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An improved bio-inspired algorithm for the directed shortest path problem.
    Zhang X; Zhang Y; Deng Y
    Bioinspir Biomim; 2014 Nov; 9(4):046016. PubMed ID: 25405318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identifying a set of influential spreaders in complex networks.
    Zhang JX; Chen DB; Dong Q; Zhao ZD
    Sci Rep; 2016 Jun; 6():27823. PubMed ID: 27296252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TSSCM: A synergism-based three-step cascade model for influence maximization on large-scale social networks.
    Zhao X; Liu F; Xing S; Wang Q
    PLoS One; 2019; 14(9):e0221271. PubMed ID: 31479453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Critical controllability analysis of directed biological networks using efficient graph reduction.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2017 Oct; 7(1):14361. PubMed ID: 29084972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Algorithm for Identifying Optimal Spreaders in a Random Walk Model of Network Communication.
    Hunt FY
    J Res Natl Inst Stand Technol; 2016; 121():180-195. PubMed ID: 34434619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of centrality for the identification of influential spreaders in complex networks.
    de Arruda GF; Barbieri AL; Rodríguez PM; Rodrigues FA; Moreno Y; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032812. PubMed ID: 25314487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of multilayer biological networks and applied to target identification of complex diseases.
    Zheng W; Wang D; Zou X
    BMC Bioinformatics; 2019 May; 20(1):271. PubMed ID: 31138124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.