These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32491966)
21. The Energy-Signaling Hub SnRK1 Is Important for Sucrose-Induced Hypocotyl Elongation. Simon NML; Kusakina J; Fernández-López Á; Chembath A; Belbin FE; Dodd AN Plant Physiol; 2018 Feb; 176(2):1299-1310. PubMed ID: 29114081 [TBL] [Abstract][Full Text] [Related]
22. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Takahashi K; Hayashi K; Kinoshita T Plant Physiol; 2012 Jun; 159(2):632-41. PubMed ID: 22492846 [TBL] [Abstract][Full Text] [Related]
23. A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. Kwon Y; Kim JH; Nguyen HN; Jikumaru Y; Kamiya Y; Hong SW; Lee H J Exp Bot; 2013 Sep; 64(12):3911-22. PubMed ID: 23888064 [TBL] [Abstract][Full Text] [Related]
24. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Franklin KA; Lee SH; Patel D; Kumar SV; Spartz AK; Gu C; Ye S; Yu P; Breen G; Cohen JD; Wigge PA; Gray WM Proc Natl Acad Sci U S A; 2011 Dec; 108(50):20231-5. PubMed ID: 22123947 [TBL] [Abstract][Full Text] [Related]
25. AXR1 is involved in BR-mediated elongation and SAUR-AC1 gene expression in Arabidopsis. Nakamura A; Shimada Y; Goda H; Fujiwara MT; Asami T; Yoshida S FEBS Lett; 2003 Oct; 553(1-2):28-32. PubMed ID: 14550541 [TBL] [Abstract][Full Text] [Related]
26. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana. Oh S; Warnasooriya SN; Montgomery BL Plant Mol Biol; 2013 Apr; 81(6):627-40. PubMed ID: 23456246 [TBL] [Abstract][Full Text] [Related]
27. Glycosyltransferase-like protein ABI8/ELD1/KOB1 promotes Arabidopsis hypocotyl elongation through regulating cellulose biosynthesis. Wang X; Jing Y; Zhang B; Zhou Y; Lin R Plant Cell Environ; 2015 Mar; 38(3):411-22. PubMed ID: 24995569 [TBL] [Abstract][Full Text] [Related]
28. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. Bours R; Kohlen W; Bouwmeester HJ; van der Krol A Plant Physiol; 2015 Feb; 167(2):517-30. PubMed ID: 25516603 [TBL] [Abstract][Full Text] [Related]
29. COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Lian N; Liu X; Wang X; Zhou Y; Li H; Li J; Mao T Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12321-12326. PubMed ID: 29087315 [TBL] [Abstract][Full Text] [Related]
30. The AP2/ERF transcription factor SlERF.J2 functions in hypocotyl elongation and plant height in tomato. Chen Y; Yang H; Tang B; Li F; Xie Q; Chen G; Hu Z Plant Cell Rep; 2023 Feb; 42(2):371-383. PubMed ID: 36512035 [TBL] [Abstract][Full Text] [Related]
31. Interactions between auxin, microtubules and XTHs mediate green shade- induced petiole elongation in arabidopsis. Sasidharan R; Keuskamp DH; Kooke R; Voesenek LA; Pierik R PLoS One; 2014; 9(3):e90587. PubMed ID: 24594664 [TBL] [Abstract][Full Text] [Related]
32. Hormonal regulation of temperature-induced growth in Arabidopsis. Stavang JA; Gallego-Bartolomé J; Gómez MD; Yoshida S; Asami T; Olsen JE; García-Martínez JL; Alabadí D; Blázquez MA Plant J; 2009 Nov; 60(4):589-601. PubMed ID: 19686536 [TBL] [Abstract][Full Text] [Related]
33. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T Plant Cell Physiol; 2012 Nov; 53(11):1965-73. PubMed ID: 23037004 [TBL] [Abstract][Full Text] [Related]
34. MiR160 and its target genes ARF10, ARF16 and ARF17 modulate hypocotyl elongation in a light, BRZ, or PAC-dependent manner in Arabidopsis: miR160 promotes hypocotyl elongation. Dai X; Lu Q; Wang J; Wang L; Xiang F; Liu Z Plant Sci; 2021 Feb; 303():110686. PubMed ID: 33487334 [TBL] [Abstract][Full Text] [Related]
35. Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation. Wang X; Zhang J; Yuan M; Ehrhardt DW; Wang Z; Mao T Plant Cell; 2012 Oct; 24(10):4012-25. PubMed ID: 23115248 [TBL] [Abstract][Full Text] [Related]
37. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Keuskamp DH; Sasidharan R; Vos I; Peeters AJ; Voesenek LA; Pierik R Plant J; 2011 Jul; 67(2):208-17. PubMed ID: 21457374 [TBL] [Abstract][Full Text] [Related]
38. The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Kim S; Hwang G; Kim S; Thi TN; Kim H; Jeong J; Kim J; Kim J; Choi G; Oh E Nat Commun; 2020 Feb; 11(1):1053. PubMed ID: 32103019 [TBL] [Abstract][Full Text] [Related]
39. Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis. Liu X; Qin T; Ma Q; Sun J; Liu Z; Yuan M; Mao T Plant Cell; 2013 May; 25(5):1740-55. PubMed ID: 23653471 [TBL] [Abstract][Full Text] [Related]
40. EIN3-Mediated Ethylene Signaling Attenuates Auxin Response during Hypocotyl Thermomorphogenesis. Kim JY; Park YJ; Lee JH; Kim ZH; Park CM Plant Cell Physiol; 2021 Sep; 62(4):708-720. PubMed ID: 33594435 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]