BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32492029)

  • 1. Novel methodology for assessing total recovery time in response to unexpected perturbations while walking.
    Rosenblum U; Kribus-Shmiel L; Zeilig G; Bahat Y; Kimel-Naor S; Melzer I; Plotnik M
    PLoS One; 2020; 15(6):e0233510. PubMed ID: 32492029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer and retention effects of gait training with anterior-posterior perturbations to postural responses after medio-lateral gait perturbations in older adults.
    Rieger MM; Papegaaij S; Pijnappels M; Steenbrink F; van Dieën JH
    Clin Biomech (Bristol, Avon); 2020 May; 75():104988. PubMed ID: 32174482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of First Recovery Step Response following Unexpected Loss of Balance during Walking: A Dynamic Approach.
    Nachmani H; Shani G; Shapiro A; Melzer I
    Gerontology; 2020; 66(4):362-370. PubMed ID: 32069450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related alterations in reactive stepping following unexpected mediolateral perturbations during gait initiation.
    Shulman D; Spencer A; Vallis LA
    Gait Posture; 2018 Jul; 64():130-134. PubMed ID: 29902716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Older adults exhibit variable responses in stepping behaviour following unexpected forward perturbations during gait initiation.
    Shulman D; Spencer A; Ann Vallis L
    Hum Mov Sci; 2019 Feb; 63():120-128. PubMed ID: 30513458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait stability in response to platform, belt, and sensory perturbations in young and older adults.
    Roeles S; Rowe PJ; Bruijn SM; Childs CR; Tarfali GD; Steenbrink F; Pijnappels M
    Med Biol Eng Comput; 2018 Dec; 56(12):2325-2335. PubMed ID: 29946955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the extended feasible stability region for assessing stability of perturbed walking.
    Bahari H; Forero J; Hall JC; Hebert JS; Vette AH; Rouhani H
    Sci Rep; 2021 Jan; 11(1):1026. PubMed ID: 33441817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balance recovery stepping responses during walking were not affected by a concurrent cognitive task among older adults.
    Paran I; Nachmani H; Salti M; Shelef I; Melzer I
    BMC Geriatr; 2022 Apr; 22(1):289. PubMed ID: 35387589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pilot study of reactive balance training using trips and slips with increasing unpredictability in young and older adults: Biomechanical mechanisms, falls and clinical feasibility.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Lord SR
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():171-179. PubMed ID: 31153101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of attentional focus on walking stability in elderly.
    de Melker Worms JLA; Stins JF; van Wegen EEH; Verschueren SMP; Beek PJ; Loram ID
    Gait Posture; 2017 Jun; 55():94-99. PubMed ID: 28433868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis?
    Selgrade BP; Meyer D; Sosnoff JJ; Franz JR
    PLoS One; 2020; 15(3):e0230202. PubMed ID: 32155225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Young and old adults prioritize dynamic stability control following gait perturbations when performing a concurrent cognitive task.
    Mersmann F; Bohm S; Bierbaum S; Dietrich R; Arampatzis A
    Gait Posture; 2013 Mar; 37(3):373-7. PubMed ID: 23122597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.