These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 32492043)
1. Lysophosphatidic acid reverses Temsirolimus-induced changes in lipid droplets and mitochondrial networks in renal cancer cells. Chhabra R; Nanjundan M PLoS One; 2020; 15(6):e0233887. PubMed ID: 32492043 [TBL] [Abstract][Full Text] [Related]
2. Potential new therapy of Rapalink-1, a new generation mammalian target of rapamycin inhibitor, against sunitinib-resistant renal cell carcinoma. Kuroshima K; Yoshino H; Okamura S; Tsuruda M; Osako Y; Sakaguchi T; Sugita S; Tatarano S; Nakagawa M; Enokida H Cancer Sci; 2020 May; 111(5):1607-1618. PubMed ID: 32232883 [TBL] [Abstract][Full Text] [Related]
3. Autotaxin-lysophosphatidic acid signaling axis mediates tumorigenesis and development of acquired resistance to sunitinib in renal cell carcinoma. Su SC; Hu X; Kenney PA; Merrill MM; Babaian KN; Zhang XY; Maity T; Yang SF; Lin X; Wood CG Clin Cancer Res; 2013 Dec; 19(23):6461-72. PubMed ID: 24122794 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking effects of mTOR, PI3K, and dual PI3K/mTOR inhibitors in hepatocellular and renal cell carcinoma models developing resistance to sunitinib and sorafenib. Serova M; de Gramont A; Tijeras-Raballand A; Dos Santos C; Riveiro ME; Slimane K; Faivre S; Raymond E Cancer Chemother Pharmacol; 2013 May; 71(5):1297-307. PubMed ID: 23479136 [TBL] [Abstract][Full Text] [Related]
5. Functional and genomic characterization of patient-derived xenograft model to study the adaptation to mTORC1 inhibitor in clear cell renal cell carcinoma. Sakamoto H; Yamasaki T; Sumiyoshi T; Takeda M; Shibasaki N; Utsunomiya N; Arakaki R; Akamatsu S; Kobayashi T; Inoue T; Kamba T; Nakamura E; Ogawa O Cancer Med; 2021 Jan; 10(1):119-134. PubMed ID: 33107222 [TBL] [Abstract][Full Text] [Related]
6. Hydroxychloroquine Destabilizes Phospho-S6 in Human Renal Carcinoma Cells. Lee HO; Mustafa A; Hudes GR; Kruger WD PLoS One; 2015; 10(7):e0131464. PubMed ID: 26134285 [TBL] [Abstract][Full Text] [Related]
7. 8-Chloroadenosine Sensitivity in Renal Cell Carcinoma Is Associated with AMPK Activation and mTOR Pathway Inhibition. Kearney AY; Fan YH; Giri U; Saigal B; Gandhi V; Heymach JV; Zurita AJ PLoS One; 2015; 10(8):e0135962. PubMed ID: 26313261 [TBL] [Abstract][Full Text] [Related]
17. Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Wu M; Si S; Li Y; Schoen S; Xiao GQ; Li X; Teh BT; Wu G; Chen J Oncotarget; 2015 Oct; 6(32):32761-73. PubMed ID: 26418749 [TBL] [Abstract][Full Text] [Related]
18. The pro-apoptosis effect of sinomenine in renal carcinoma via inducing autophagy through inactivating PI3K/AKT/mTOR pathway. Deng F; Ma YX; Liang L; Zhang P; Feng J Biomed Pharmacother; 2018 Jan; 97():1269-1274. PubMed ID: 29145153 [TBL] [Abstract][Full Text] [Related]
19. mTOR-inhibition in metastatic renal cell carcinoma. Focus on temsirolimus: a review. Gerullis H; Ecke TH; Eimer C; Heuck CJ; Otto T Minerva Urol Nefrol; 2010 Dec; 62(4):411-23. PubMed ID: 20944541 [TBL] [Abstract][Full Text] [Related]
20. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Ghosh AP; Marshall CB; Coric T; Shim EH; Kirkman R; Ballestas ME; Ikura M; Bjornsti MA; Sudarshan S Oncotarget; 2015 Jul; 6(20):17895-910. PubMed ID: 26255626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]