BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32492111)

  • 1. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat.
    Zhang H; Sajdak BS; Merriman DK; McCall MA; Carroll J; Lipinski DM
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):6. PubMed ID: 32492111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Outer Retinal Remodeling in the Hibernating 13-Lined Ground Squirrel.
    Sajdak BS; Bell BA; Lewis TR; Luna G; Cornwell GS; Fisher SK; Merriman DK; Carroll J
    Invest Ophthalmol Vis Sci; 2018 May; 59(6):2538-2547. PubMed ID: 29847661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating seasonal changes of cone photoreceptor structure in the 13-lined ground squirrel.
    Sajdak BS; Salmon AE; Litts KM; Wells C; Allen KP; Dubra A; Merriman DK; Carroll J
    Vision Res; 2019 May; 158():90-99. PubMed ID: 30826354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina.
    Merriman DK; Sajdak BS; Li W; Jones BW
    Exp Eye Res; 2016 Sep; 150():90-105. PubMed ID: 26808487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram.
    Mojumder DK; Sherry DM; Frishman LJ
    J Physiol; 2008 May; 586(10):2551-80. PubMed ID: 18388140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The d-wave of the rod electroretinogram of rat originates in the cone pathway.
    Naarendorp F; Williams GE
    Vis Neurosci; 1999; 16(1):91-105. PubMed ID: 10022481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposite effects of nitric oxide on rod and cone photoreceptors of rat retina in situ.
    Sato M; Ohtsuka T
    Neurosci Lett; 2010 Mar; 473(1):62-6. PubMed ID: 20171265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rod and cone signaling transmission in the retina of zebrafish: an erg study.
    Ren JQ; Li L
    Int J Neurosci; 2004 Feb; 114(2):259-70. PubMed ID: 14702214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interocular symmetry, intraobserver repeatability, and interobserver reliability of cone density measurements in the 13-lined ground squirrel.
    Sajdak BS; Salmon AE; Linderman RE; Cava JA; Heitkotter H; Carroll J
    PLoS One; 2019; 14(9):e0223110. PubMed ID: 31557245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina.
    Abd-El-Barr MM; Pennesi ME; Saszik SM; Barrow AJ; Lem J; Bramblett DE; Paul DL; Frishman LJ; Wu SM
    J Neurophysiol; 2009 Sep; 102(3):1945-55. PubMed ID: 19587322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectral model for signal elements isolated from zebrafish photopic electroretinogram.
    Nelson RF; Singla N
    Vis Neurosci; 2009; 26(4):349-63. PubMed ID: 19723365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors.
    Bennett LD; Brush RS; Chan M; Lydic TA; Reese K; Reid GE; Busik JV; Elliott MH; Anderson RE
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3150-7. PubMed ID: 24722693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system.
    Vinberg F; Kolesnikov AV; Kefalov VJ
    Vision Res; 2014 Aug; 101():108-17. PubMed ID: 24959652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically induced cone degeneration in the 13-lined ground squirrel.
    Follett HM; Warr E; Grieshop J; Yu CT; Gaffney M; Bowie OR; Lee JW; Tarima S; Merriman DK; Carroll J
    Vis Neurosci; 2024 May; 41():E002. PubMed ID: 38725382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation.
    Euler T; Wässle H
    J Neurophysiol; 1998 Mar; 79(3):1384-95. PubMed ID: 9497419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravitreal injection of triamcinolone acetonide into healthy rabbit eyes alters retinal function and morphology.
    Myers AC; Bruun A; Ghosh F; Adrian ML; Andréasson S; Ponjavic V
    Curr Eye Res; 2013 Jun; 38(6):649-61. PubMed ID: 23537282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that L-AP5 and D,L-AP4 can preferentially block cone signals in the rat retina.
    Green DG; Kapousta-Bruneau NV
    Vis Neurosci; 2007; 24(1):9-15. PubMed ID: 17430605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Retinal Development in 13-Lined Ground Squirrels.
    Kandoi S; Martinez C; Merriman DK; Lamba DA
    Transl Vis Sci Technol; 2022 Nov; 11(11):17. PubMed ID: 36409292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.