BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32492152)

  • 21. Convergent Mechanistic Features between the Structurally Diverse N- and O-Methyltransferases: Glycine N-Methyltransferase and Catechol O-Methyltransferase.
    Zhang J; Klinman JP
    J Am Chem Soc; 2016 Jul; 138(29):9158-65. PubMed ID: 27355841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and structural comparisons of cysteine residues in the Val108 wild type and Met108 variant of human soluble catechol O-methyltransferase.
    Li Y; Yang X; Chang M; Yager JD; van Breemen RB; Bolton JL
    Chem Biol Interact; 2005 Apr; 152(2-3):151-63. PubMed ID: 15840388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5,6-Dihydroxytryptamine is a substrate for catechol O-methyltransferase.
    Fuller RW; Roush BW
    Biochem Pharmacol; 1974 Aug; 23(15):2208-9. PubMed ID: 4416934
    [No Abstract]   [Full Text] [Related]  

  • 24. Crystal structures of the apo and holo form of rat catechol-O-methyltransferase.
    Tsuji E; Okazaki K; Isaji M; Takeda K
    J Struct Biol; 2009 Mar; 165(3):133-9. PubMed ID: 19111934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of catechol O-methyltransferase.
    Vidgren J; Svensson LA; Liljas A
    Nature; 1994 Mar; 368(6469):354-8. PubMed ID: 8127373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The reaction mechanism of phenylethanolamine N-methyltransferase: a density functional theory study.
    Georgieva P; Wu Q; McLeish MJ; Himo F
    Biochim Biophys Acta; 2009 Dec; 1794(12):1831-7. PubMed ID: 19733262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models.
    Taskinen J; Ethell BT; Pihlavisto P; Hood AM; Burchell B; Coughtrie MW
    Drug Metab Dispos; 2003 Sep; 31(9):1187-97. PubMed ID: 12920175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis.
    Lee S; Kang J; Kim J
    Sci Rep; 2019 May; 9(1):8059. PubMed ID: 31147608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catechol O-methyltransferase.
    Borchardt RT
    Methods Enzymol; 1981; 77():267-72. PubMed ID: 7329304
    [No Abstract]   [Full Text] [Related]  

  • 30. Ultraviolet resonance Raman study of drug binding in dihydrofolate reductase, gyrase, and catechol O-methyltransferase.
    Couling VW; Fischer P; Klenerman D; Huber W
    Biophys J; 1998 Aug; 75(2):1097-106. PubMed ID: 9675211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catechol-O-methyltransferase in complex with substituted 3'-deoxyribose bisubstrate inhibitors.
    Ellermann M; Lerner C; Burgy G; Ehler A; Bissantz C; Jakob-Roetne R; Paulini R; Allemann O; Tissot H; Grünstein D; Stihle M; Diederich F; Rudolph MG
    Acta Crystallogr D Biol Crystallogr; 2012 Mar; 68(Pt 3):253-60. PubMed ID: 22349227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis.
    Zhu BT
    Curr Drug Metab; 2002 Jun; 3(3):321-49. PubMed ID: 12083324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Val158Met polymorphism in COMT gene and cancer risk: role of endogenous and exogenous catechols.
    Sak K
    Drug Metab Rev; 2017 Feb; 49(1):56-83. PubMed ID: 27826992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dihydroxynitrobenzaldehydes and hydroxymethoxynitrobenzaldehydes: synthesis and biological activity as catechol-O-methyltransferase inhibitors.
    Pérez RA; Fernández-Alvarez E; Nieto O; Piedrafita FJ
    J Med Chem; 1992 Nov; 35(24):4584-8. PubMed ID: 1469689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Active-Site Modification and Quaternary Structure on the Regioselectivity of Catechol-O-Methyltransferase.
    Law BJ; Bennett MR; Thompson ML; Levy C; Shepherd SA; Leys D; Micklefield J
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2683-7. PubMed ID: 26797714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidation of the methyl transfer mechanism catalyzed by chalcone O-methyltransferase: a density functional study.
    Cui FC; Pan XL; Liu W; Liu JY
    J Comput Chem; 2011 Nov; 32(14):3068-74. PubMed ID: 21815175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catechol-O-methyltransferases.
    Bai HW; Shim JY; Yu J; Zhu BT
    Chem Res Toxicol; 2007 Oct; 20(10):1409-25. PubMed ID: 17880176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase.
    Cuyàs E; Verdura S; Lozano-Sánchez J; Viciano I; Llorach-Parés L; Nonell-Canals A; Bosch-Barrera J; Brunet J; Segura-Carretero A; Sanchez-Martinez M; Encinar JA; Menendez JA
    Food Chem Toxicol; 2019 Jun; 128():35-45. PubMed ID: 30935952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A semiempirical study on inhibition of catechol O-methyltransferase by substituted catechols.
    Ovaska M; Yliniemelä A
    J Comput Aided Mol Des; 1998 May; 12(3):301-7. PubMed ID: 9749372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of ortho- and meta-nitrated inhibitors of catechol-O-methyltransferase: interactions with the active site and regioselectivity of O-methylation.
    Palma PN; Rodrigues ML; Archer M; Bonifácio MJ; Loureiro AI; Learmonth DA; Carrondo MA; Soares-da-Silva P
    Mol Pharmacol; 2006 Jul; 70(1):143-53. PubMed ID: 16618795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.