These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32492259)

  • 1. Displacement and stress distribution of Kilroy spring and nickel-titanium closed-coil spring during traction of palatally impacted canine: A 3-dimensional finite element analysis.
    Lena Sezici Y; Gediz M; Akış AA; Sarı G; Duran GS; Dindaroğlu F
    Orthod Craniofac Res; 2020 Nov; 23(4):471-478. PubMed ID: 32492259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Ballista and Kilroy Springs on Palatally Impacted Canines: A Finite Element Model Analysis.
    Başer EN; Akar NK; Sayar G
    Turk J Orthod; 2023 Mar; 36(1):30-38. PubMed ID: 36967602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of stresses on adjacent teeth during the traction of palatally impacted canines.
    Zeno KG; El-Mohtar SJ; Mustapha S; Ghafari JG
    Angle Orthod; 2019 May; 89(3):418-425. PubMed ID: 30516417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional comparison of continuous and segmented arch techniques in the traction of palatally impacted canines using a non-linear finite element analysis.
    Bou Malhab S; Karam R; Kaddah F; El Khoury T; Ghosn N; Khoury E; Kassis A; Ghoubril J
    J Orthod; 2024 Jun; 51(2):192-201. PubMed ID: 37470224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement and periodontal stress analysis on palatally impacted canine - A finite element analysis.
    Nagendraprasad K; Mathew S; Shivamurthy P; Sabrish S
    Indian J Dent Res; 2019; 30(5):788-793. PubMed ID: 31854375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force generation by orthodontic coil springs.
    von Fraunhofer JA; Bonds PW; Johnson BE
    Angle Orthod; 1993; 63(2):145-8. PubMed ID: 8498703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of initial incisor crowding alignment in the periodontally reduced mandible using the finite element method.
    Baghdadi D; Reimann S; Keilig L; Reichert C; Jäger A; Bourauel C
    J Orofac Orthop; 2019 Jul; 80(4):184-193. PubMed ID: 31139844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of arch wire size on orthodontic reverse closing loop and retraction force in canine tooth distalization : Three-dimensional finite element analysis.
    Buyuk SK; Guler MS; Bekci ML
    J Orofac Orthop; 2019 Jan; 80(1):17-24. PubMed ID: 30306188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified Kilroy spring for eruption of palatally impacted canines.
    Sharma V; Nagar A; Tandon P
    J Clin Orthod; 2015 Jan; 49(1):46-8. PubMed ID: 25702693
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparative evaluation of displacement and stress distribution pattern during maxillary arch distalization with Infra Zygomatic Screw- A three dimensional finite element study.
    Khan J; Goyal M; Kumar M; Kushwah A; Kaur A; Sharma M
    Int Orthod; 2021 Jun; 19(2):291-300. PubMed ID: 33875363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional quantification of the force system involved in a palatally impacted canine using a cantilever spring design.
    Yadav S; Chen J; Upadhyay M; Roberts E; Nanda R
    Orthodontics (Chic.); 2012; 13(1):22-33. PubMed ID: 22567613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel titanium springs versus stainless steel springs: A randomized clinical trial of two methods of space closure.
    Norman NH; Worthington H; Chadwick SM
    J Orthod; 2016 Sep; 43(3):176-85. PubMed ID: 26836747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The super-elastic Japanese NiTi alloy wire for use in orthodontics. Part III. Studies on the Japanese NiTi alloy coil springs.
    Miura F; Mogi M; Ohura Y; Karibe M
    Am J Orthod Dentofacial Orthop; 1988 Aug; 94(2):89-96. PubMed ID: 3165245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force degradation of closed coil springs: an in vitro evaluation.
    Angolkar PV; Arnold JV; Nanda RS; Duncanson MG
    Am J Orthod Dentofacial Orthop; 1992 Aug; 102(2):127-33. PubMed ID: 1636629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature change on the load value of Japanese NiTi coil springs in the superelastic range.
    Barwart O
    Am J Orthod Dentofacial Orthop; 1996 Nov; 110(5):553-8. PubMed ID: 8922516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leptin levels in gingival crevicular fluid during canine retraction: in vivo comparative study.
    Sar SK; Shetty D; Kumar P; Juneja S; Sharma P
    J Orthod; 2019 Mar; 46(1):27-33. PubMed ID: 31056072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adjustment in NiTi closed coil spring for an extended range of activation.
    Ravipati RR; Sivakumar A; Sudhakar P; Padmapriya CV; Bhaskar M; Azharuddin M
    Int J Orthod Milwaukee; 2014; 25(3):21-2. PubMed ID: 25745719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographic analysis of the initial canine displacement produced by four different retraction springs.
    Kumar YM; Ravindran NS; Balasubramaniam MR
    Angle Orthod; 2009 Mar; 79(2):368-72. PubMed ID: 19216610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of laceback ligatures on maxillary canine retraction.
    Sueri MY; Turk T
    Angle Orthod; 2006 Nov; 76(6):1010-4. PubMed ID: 17090165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys.
    Kapila S; Angolkar PV; Duncanson MG; Nanda RS
    Am J Orthod Dentofacial Orthop; 1990 Aug; 98(2):117-26. PubMed ID: 2378317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.