These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32492455)

  • 1. Chest compressions induce errors in end-tidal carbon dioxide measurement.
    Leturiondo M; Ruiz de Gauna S; Gutiérrez JJ; Alonso D; Corcuera C; Urtusagasti JF; González-Otero DM; Russell JK; Daya MR; Ruiz JM
    Resuscitation; 2020 Aug; 153():195-201. PubMed ID: 32492455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the impact of ventilations on the capnogram in out-of-hospital cardiac arrest.
    Gutiérrez JJ; Ruiz JM; Ruiz de Gauna S; González-Otero DM; Leturiondo M; Russell JK; Corcuera C; Urtusagasti JF; Daya MR
    PLoS One; 2020; 15(2):e0228395. PubMed ID: 32023298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of capnogram waveform in the presence of chest compression artefact during cardiopulmonary resuscitation.
    Ruiz de Gauna S; Leturiondo M; Gutiérrez JJ; Ruiz JM; González-Otero DM; Russell JK; Daya M
    Resuscitation; 2018 Dec; 133():53-58. PubMed ID: 30278204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between Prehospital CPR Quality and End-Tidal Carbon Dioxide Levels in Out-of-Hospital Cardiac Arrest.
    Murphy RA; Bobrow BJ; Spaite DW; Hu C; McDannold R; Vadeboncoeur TF
    Prehosp Emerg Care; 2016; 20(3):369-77. PubMed ID: 26830353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chest compression artefact on capnogram-based ventilation detection during out-of-hospital cardiopulmonary resuscitation.
    Leturiondo M; Ruiz de Gauna S; Ruiz JM; Julio Gutiérrez J; Leturiondo LA; González-Otero DM; Russell JK; Zive D; Daya M
    Resuscitation; 2018 Mar; 124():63-68. PubMed ID: 29246741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the evolution of end-tidal carbon dioxide within chest compression pauses to detect restoration of spontaneous circulation.
    Gutiérrez JJ; Leturiondo M; Ruiz de Gauna S; Ruiz JM; Azcarate I; González-Otero DM; Urtusagasti JF; Russell JK; Daya MR
    PLoS One; 2021; 16(5):e0251511. PubMed ID: 34003839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of ventilation rate on end-tidal carbon dioxide level during manual cardiopulmonary resuscitation.
    Ruiz de Gauna S; Gutiérrez JJ; Ruiz J; Leturiondo M; Azcarate I; González-Otero DM; Corcuera C; Russell JK; Daya MR
    Resuscitation; 2020 Nov; 156():215-222. PubMed ID: 32622015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of chest compressions to end-tidal carbon dioxide levels generated during out-of-hospital cardiopulmonary resuscitation.
    Gutiérrez JJ; Sandoval CL; Leturiondo M; Russell JK; Redondo K; Daya MR; Ruiz de Gauna S
    Resuscitation; 2022 Oct; 179():225-232. PubMed ID: 35835250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative relationship between end-tidal carbon dioxide and CPR quality during both in-hospital and out-of-hospital cardiac arrest.
    Sheak KR; Wiebe DJ; Leary M; Babaeizadeh S; Yuen TC; Zive D; Owens PC; Edelson DP; Daya MR; Idris AH; Abella BS
    Resuscitation; 2015 Apr; 89():149-54. PubMed ID: 25643651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing ventilation detection during cardiopulmonary resuscitation by filtering chest compression artifact from the capnography waveform.
    Gutiérrez JJ; Leturiondo M; Ruiz de Gauna S; Ruiz JM; Leturiondo LA; González-Otero DM; Zive D; Russell JK; Daya M
    PLoS One; 2018; 13(8):e0201565. PubMed ID: 30071008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrathoracic Airway Closure Impacts CO
    Grieco DL; J Brochard L; Drouet A; Telias I; Delisle S; Bronchti G; Ricard C; Rigollot M; Badat B; Ouellet P; Charbonney E; Mancebo J; Mercat A; Savary D; Richard JM
    Am J Respir Crit Care Med; 2019 Mar; 199(6):728-737. PubMed ID: 30257100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of the capnogram to monitor ventilation rate during cardiopulmonary resuscitation.
    Aramendi E; Elola A; Alonso E; Irusta U; Daya M; Russell JK; Hubner P; Sterz F
    Resuscitation; 2017 Jan; 110():162-168. PubMed ID: 27670357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of thrust, depth and the impedance cardiogram as measures of cardiopulmonary resuscitation efficacy in a porcine model of cardiac arrest.
    Howe A; O'Hare P; Crawford P; Delafont B; McAlister O; Di Maio R; Clutton E; Adgey J; McEneaney D
    Resuscitation; 2015 Nov; 96():114-20. PubMed ID: 26234892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-tidal carbon dioxide output in manual cardiopulmonary resuscitation versus active compression-decompression device during prehospital quality controlled resuscitation: a case series study.
    Setälä PA; Virkkunen IT; Kämäräinen AJ; Huhtala HSA; Virta JS; Yli-Hankala AM; Hoppu SE
    Emerg Med J; 2018 Jul; 35(7):428-432. PubMed ID: 29769232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical pilot study of different hand positions during manual chest compressions monitored with capnography.
    Qvigstad E; Kramer-Johansen J; Tømte Ø; Skålhegg T; Sørensen Ø; Sunde K; Olasveengen TM
    Resuscitation; 2013 Sep; 84(9):1203-7. PubMed ID: 23499897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capnography during cardiac arrest.
    Sandroni C; De Santis P; D'Arrigo S
    Resuscitation; 2018 Nov; 132():73-77. PubMed ID: 30142399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest.
    Skulec R; Vojtisek P; Cerny V
    Crit Care; 2019 Oct; 23(1):334. PubMed ID: 31665061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of end-tidal carbon dioxide (ETCO
    Paiva EF; Paxton JH; O'Neil BJ
    Resuscitation; 2018 Feb; 123():1-7. PubMed ID: 29217394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and accuracy of the thoracic impedance signal for measuring cardiopulmonary resuscitation quality metrics.
    Alonso E; Ruiz J; Aramendi E; González-Otero D; Ruiz de Gauna S; Ayala U; Russell JK; Daya M
    Resuscitation; 2015 Mar; 88():28-34. PubMed ID: 25524362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial end-tidal carbon dioxide as a predictive factor for return of spontaneous circulation in nonshockable out-of-hospital cardiac arrest patients: A retrospective observational study.
    Poppe M; Stratil P; Clodi C; Schriefl C; Nürnberger A; Magnet I; Warenits AM; Hubner P; Lobmeyr E; Schober A; Zajicek A; Testori C
    Eur J Anaesthesiol; 2019 Jul; 36(7):524-530. PubMed ID: 31742569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.