BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 32492839)

  • 1. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis.
    Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests.
    Ruprecht B; Zecha J; Zolg DP; Kuster B
    Methods Mol Biol; 2017; 1550():83-98. PubMed ID: 28188525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics.
    Bortel P; Piga I; Koenig C; Gerner C; Martinez-Val A; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(5):100754. PubMed ID: 38548019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem Mass Tag-Based Phosphoproteomics in Plants.
    Vélez-Bermúdez IC; Jain D; Ravindran A; Chen CW; Hsu CC; Schmidt W
    Methods Mol Biol; 2023; 2581():309-319. PubMed ID: 36413327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Wang MC; Lee YH; Liao PC
    Anal Bioanal Chem; 2015 Feb; 407(5):1343-56. PubMed ID: 25486920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citrate boosts the performance of phosphopeptide analysis by UPLC-ESI-MS/MS.
    Winter D; Seidler J; Ziv Y; Shiloh Y; Lehmann WD
    J Proteome Res; 2009 Jan; 8(1):418-24. PubMed ID: 19053530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry.
    Choi S; Kim J; Cho K; Park G; Yoon JH; Park S; Yoo JS; Ryu SH; Kim YH; Kim J
    Rapid Commun Mass Spectrom; 2010 May; 24(10):1467-74. PubMed ID: 20411586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome Analysis in Immune Cell Signaling.
    Rathore D; Nita-Lazar A
    Curr Protoc Immunol; 2020 Sep; 130(1):e105. PubMed ID: 32936995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of multistep IMAC enrichment with high-pH reverse phase separation for in-depth phosphoproteomic profiling.
    Yue XS; Hummon AB
    J Proteome Res; 2013 Sep; 12(9):4176-86. PubMed ID: 23927012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.