BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32493396)

  • 1. MAUDE: inferring expression changes in sorting-based CRISPR screens.
    de Boer CG; Ray JP; Hacohen N; Regev A
    Genome Biol; 2020 Jun; 21(1):134. PubMed ID: 32493396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long non-coding RNAs.
    Bergadà-Pijuan J; Pulido-Quetglas C; Vancura A; Johnson R
    Bioinformatics; 2020 Mar; 36(6):1673-1680. PubMed ID: 31681950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crisflash: open-source software to generate CRISPR guide RNAs against genomes annotated with individual variation.
    Jacquin ALS; Odom DT; Lukk M
    Bioinformatics; 2019 Sep; 35(17):3146-3147. PubMed ID: 30649181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens.
    Daley TP; Lin Z; Lin X; Liu Y; Wong WH; Qi LS
    Genome Biol; 2018 Oct; 19(1):159. PubMed ID: 30296940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens.
    Genolet O; Ravid Lustig L; Schulz EG
    Methods Mol Biol; 2022; 2520():1-24. PubMed ID: 35218528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MultiGuideScan: a multi-processing tool for designing CRISPR guide RNA libraries.
    Li T; Wang S; Luo F; Wu FX; Wang J
    Bioinformatics; 2020 Feb; 36(3):920-921. PubMed ID: 31386102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
    Montalbano A; Canver MC; Sanjana NE
    Mol Cell; 2017 Oct; 68(1):44-59. PubMed ID: 28985510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the design of CRISPR-based single-cell molecular screens.
    Hill AJ; McFaline-Figueroa JL; Starita LM; Gasperini MJ; Matreyek KA; Packer J; Jackson D; Shendure J; Trapnell C
    Nat Methods; 2018 Apr; 15(4):271-274. PubMed ID: 29457792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRitz: rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing.
    Cancellieri S; Canver MC; Bombieri N; Giugno R; Pinello L
    Bioinformatics; 2020 Apr; 36(7):2001-2008. PubMed ID: 31764961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.
    Soppe JA; Lebbink RJ
    Trends Microbiol; 2017 Oct; 25(10):833-850. PubMed ID: 28522157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches.
    Cheng X; Li Z; Shan R; Li Z; Wang S; Zhao W; Zhang H; Chao L; Peng J; Fei T; Li W
    Nat Commun; 2023 Feb; 14(1):752. PubMed ID: 36765063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correcting CRISPR for copy number.
    Shen JP; Ideker T
    Nat Genet; 2017 Nov; 49(12):1674-1675. PubMed ID: 29186130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif.
    Zhao C; Zheng X; Qu W; Li G; Li X; Miao YL; Han X; Liu X; Li Z; Ma Y; Shao Q; Li H; Sun F; Xie S; Zhao S
    Int J Biol Sci; 2017; 13(12):1470-1478. PubMed ID: 29230095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens.
    Guna A; Page KR; Replogle JM; Esantsi TK; Wang ML; Weissman JS; Voorhees RM
    BMC Genomics; 2023 Oct; 24(1):651. PubMed ID: 37904134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.
    Oliveros JC; Franch M; Tabas-Madrid D; San-León D; Montoliu L; Cubas P; Pazos F
    Nucleic Acids Res; 2016 Jul; 44(W1):W267-71. PubMed ID: 27166368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens.
    Miles LA; Garippa RJ; Poirier JT
    FEBS J; 2016 Sep; 283(17):3170-80. PubMed ID: 27250066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas bioinformatics.
    Alkhnbashi OS; Meier T; Mitrofanov A; Backofen R; Voß B
    Methods; 2020 Feb; 172():3-11. PubMed ID: 31326596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.