These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 32493498)
1. The egg and larval pheromone dodecanoic acid mediates density-dependent oviposition of Phlebotomus papatasi. Kowacich D; Hatano E; Schal C; Ponnusamy L; Apperson CS; Shymanovich T; Wasserberg G Parasit Vectors; 2020 Jun; 13(1):280. PubMed ID: 32493498 [TBL] [Abstract][Full Text] [Related]
2. Attraction and oviposition preferences of Phlebotomus papatasi (Diptera: Psychodidae), vector of Old-World cutaneous leishmaniasis, to larval rearing media. Marayati BF; Schal C; Ponnusamy L; Apperson CS; Rowland TE; Wasserberg G Parasit Vectors; 2015 Dec; 8():663. PubMed ID: 26714743 [TBL] [Abstract][Full Text] [Related]
3. Response of gravid Phlebotmus papatasi females to an oviposition attractant/stimulant associated with conspecific eggs. Srinivasan R; Radjame K; Panicker KN; Dhanda V Indian J Exp Biol; 1995 Oct; 33(10):757-60. PubMed ID: 8575808 [TBL] [Abstract][Full Text] [Related]
4. Larval Conditioning and Aging of Sand Fly Rearing Medium Affect Oviposition Site Selection in Phlebotomus papatasi (Diptera: Psychodidae) Sand Flies. Faw LR; Raymann K; Romo Bechara N; Wasserberg G J Med Entomol; 2021 Jul; 58(4):1931-1935. PubMed ID: 33855452 [TBL] [Abstract][Full Text] [Related]
5. Diel periodicity and visual cues guide oviposition behavior in Phlebotomus papatasi, vector of old-world cutaneous leishmaniasis. Shymanovich T; Faw L; Hajhashemi N; Teague J; Schal C; Ponnusamy L; Apperson CS; Hatano E; Wasserberg G PLoS Negl Trop Dis; 2019 Mar; 13(3):e0007165. PubMed ID: 30835733 [TBL] [Abstract][Full Text] [Related]
6. Oviposition-Site Selection of Phlebotomus papatasi (Diptera: Psychodidae) Sand Flies: Attraction to Bacterial Isolates From an Attractive Rearing Medium. Kakumanu ML; Marayati BF; Schal C; Apperson CS; Wasserberg G; Ponnusamy L J Med Entomol; 2021 Mar; 58(2):518-527. PubMed ID: 33277897 [TBL] [Abstract][Full Text] [Related]
7. Behavioural and antennal responses of Aedes aegypti (l.) (Diptera: Culicidae) gravid females to chemical cues from conspecific larvae. Boullis A; Mulatier M; Delannay C; Héry L; Verheggen F; Vega-Rúa A PLoS One; 2021; 16(2):e0247657. PubMed ID: 33626104 [TBL] [Abstract][Full Text] [Related]
8. Hump-shaped density-dependent regulation of mosquito oviposition site-selection by conspecific immature stages: theory, field test with Aedes albopictus, and a meta-analysis. Wasserberg G; Bailes N; Davis C; Yeoman K PLoS One; 2014; 9(3):e92658. PubMed ID: 24681526 [TBL] [Abstract][Full Text] [Related]
9. Microbial ecology of sand fly breeding sites: aging and larval conditioning alter the bacterial community composition of rearing substrates. Romo Bechara N; Wasserberg G; Raymann K Parasit Vectors; 2022 Jul; 15(1):265. PubMed ID: 35883112 [TBL] [Abstract][Full Text] [Related]
10. Sub-additive effect of conspecific eggs and frass on oviposition rate of Lutzomyia longipalpis and Phlebotomus papatasi. Wasserberg G; Rowton ED J Vector Ecol; 2011 Mar; 36 Suppl 1():S138-43. PubMed ID: 21366766 [TBL] [Abstract][Full Text] [Related]
11. Spatial Bet Hedging in Sand Fly Oviposition: Factors Affecting Skip Oviposition in McLaughlin LG; Wasserberg G Vector Borne Zoonotic Dis; 2021 Apr; 21(4):280-288. PubMed ID: 33793344 [TBL] [Abstract][Full Text] [Related]
12. Isolation of oviposition pheromone from the eggs of the sandfly Lutzomyia longipalpis. Dougherty MJ; Hamilton JG; Ward RD Med Vet Entomol; 1994 Apr; 8(2):119-24. PubMed ID: 8025318 [TBL] [Abstract][Full Text] [Related]
14. How conspecific and allospecific eggs and larvae drive oviposition preference in Drosophila. Moreira-Soto RD; Khallaf MA; Hansson BS; Knaden M Chem Senses; 2024 Jan; 49():. PubMed ID: 38606759 [TBL] [Abstract][Full Text] [Related]
15. Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density. Khan Z; Bohman B; Ignell R; Hill SR Parasit Vectors; 2023 Aug; 16(1):264. PubMed ID: 37542293 [TBL] [Abstract][Full Text] [Related]
16. Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con- and heterospecific tracks. Oliver TH; Timms JE; Taylor A; Leather SR Bull Entomol Res; 2006 Feb; 96(1):25-34. PubMed ID: 16441902 [TBL] [Abstract][Full Text] [Related]
17. Fatty acids derived from oviposition systems guide female black soldier flies (Hermetia illucens) toward egg deposition sites. Klüber P; Arous E; Jerschow J; Fraatz M; Bakonyi D; Rühl M; Zorn H Insect Sci; 2024 Aug; 31(4):1231-1248. PubMed ID: 37824440 [TBL] [Abstract][Full Text] [Related]
18. Cannibalism of Egg and Neonate Larvae by Late Stage Conspecifics of Anopheles gambiae (Diptera: Culicidae): Implications for Ovipositional Studies. Huang J; Miller JR; Walker ED J Med Entomol; 2018 Jun; 55(4):801-807. PubMed ID: 29697815 [TBL] [Abstract][Full Text] [Related]
19. Chemical Mediation of Oviposition by Anopheles Mosquitoes: a Push-Pull System Driven by Volatiles Associated with Larval Stages. Schoelitsz B; Mwingira V; Mboera LEG; Beijleveld H; Koenraadt CJM; Spitzen J; van Loon JJA; Takken W J Chem Ecol; 2020 Apr; 46(4):397-409. PubMed ID: 32240482 [TBL] [Abstract][Full Text] [Related]
20. Oviposition behaviour of Phlebotomus argentipes--a laboratory-based study. Kumar V; Rama A; Kesari S; Bhunia GS; Dinesh DS; Das P Mem Inst Oswaldo Cruz; 2013 Dec; 108(8):1065-7. PubMed ID: 24141963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]