BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32493577)

  • 1. Exponential stability of bilateral sampled-data teleoperation systems using multirate approach.
    Ghavifekr AA; Ghiasi AR; Badamchizadeh MA; Hashemzadeh F
    ISA Trans; 2020 Oct; 105():190-197. PubMed ID: 32493577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensors Allocation and Observer Design for Discrete Bilateral Teleoperation Systems with Multi-Rate Sampling.
    Ghavifekr AA; De Fazio R; Velazquez R; Visconti P
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven NODE based multirate sampled data state feedback control.
    Zhao L; Li S; Liu R
    ISA Trans; 2024 Jan; 144():188-200. PubMed ID: 37949768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.
    Zakerimanesh A; Hashemzadeh F; Ghiasi AR
    ISA Trans; 2017 May; 68():33-47. PubMed ID: 28267986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linear matrix inequality (LMI) approach to robust H/sub 2/ sampled-data control for linear uncertain systems.
    Hu LS; Lam J; Cao YY; Shao HH
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(1):149-55. PubMed ID: 18238166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral Teleoperation of Single-Master Multislave Systems With Semi-Markovian Jump Stochastic Interval Time-Varying Delayed Communication Channels.
    Baranitha R; Mohajerpoor R; Rakkiyappan R
    IEEE Trans Cybern; 2021 Jan; 51(1):247-257. PubMed ID: 30703052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed Neural-Network-Based Cooperation Control for Teleoperation of Multiple Mobile Manipulators Under Round-Robin Protocol.
    Li Y; Wang L; Liu K; He W; Yin Y; Johansson R
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4841-4855. PubMed ID: 34767516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilateral shared autonomous systems with passive and nonpassive input forces under time varying delay.
    Islam S; Liu PX; El Saddik A; Dias J; Seneviratne L
    ISA Trans; 2015 Jan; 54():218-28. PubMed ID: 25225153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive neural network based position tracking control for Dual-master/Single-slave teleoperation system under communication constant time delays.
    Ji Y; Liu D; Guo Y
    ISA Trans; 2019 Oct; 93():80-92. PubMed ID: 30910311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-inspired stable bilateral teleoperation of mobile manipulators.
    Santiago DD; Slawinski E; Mut V
    ISA Trans; 2019 Dec; 95():392-404. PubMed ID: 31153523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.
    Li X; Fang JA; Li H
    Neural Netw; 2017 Sep; 93():165-175. PubMed ID: 28600976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Network-Based Control of Networked Trilateral Teleoperation With Geometrically Unknown Constraints.
    Li Z; Xia Y; Wang D; Zhai DH; Su CY; Zhao X
    IEEE Trans Cybern; 2016 May; 46(5):1051-64. PubMed ID: 25956001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.
    Amini H; Farzaneh B; Azimifar F; Sarhan AAD
    ISA Trans; 2016 Sep; 64():293-302. PubMed ID: 27329852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    Yang Y; He W; Han QL; Peng C
    IEEE Trans Cybern; 2019 Dec; 49(12):4090-4102. PubMed ID: 30106746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A passivity criterion for sampled-data bilateral teleoperation systems.
    Jazayeri A; Tavakoli M
    IEEE Trans Haptics; 2013; 6(3):363-9. PubMed ID: 24808332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of feedforward and feedback position control for passive bilateral teleoperation with delays.
    Kostyukova O; Vista FP; Chong KT
    ISA Trans; 2019 Feb; 85():200-213. PubMed ID: 30385035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1512-28. PubMed ID: 18179070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Control of Semi-Autonomous Teleoperation System With Asymmetric Time-Varying Delays and Input Uncertainties.
    Zhai DH; Xia Y
    IEEE Trans Cybern; 2017 Nov; 47(11):3621-3633. PubMed ID: 27295699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.