These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32493578)

  • 1. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems.
    Modiri A; Mobayen S
    ISA Trans; 2020 Oct; 105():33-50. PubMed ID: 32493578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization of uncertain general fractional unified chaotic systems via finite-time adaptive sliding mode control.
    Fu H; Kao Y
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-time generalized synchronization of non-identical fractional order chaotic systems and its application in speech secure communication.
    Yang J; Xiong J; Cen J; He W
    PLoS One; 2022; 17(3):e0263007. PubMed ID: 35320280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control.
    Chen D; Zhang R; Sprott JC; Chen H; Ma X
    Chaos; 2012 Jun; 22(2):023130. PubMed ID: 22757537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbolic uncertainty estimator based fractional order sliding mode control framework for uncertain fractional order chaos stabilization and synchronization.
    Deepika D
    ISA Trans; 2022 Apr; 123():76-86. PubMed ID: 34092388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-free finite-time robust control using fractional-order ultra-local model and prescribed performance sliding surface for upper-limb rehabilitation exoskeleton.
    He D; Wang H; Tian Y; Ma X
    ISA Trans; 2024 Apr; 147():511-526. PubMed ID: 38336511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Synchronization Strategy between Two Autonomous Dissipative Chaotic Systems Using Fractional-Order Mittag-Leffler Stability.
    Liu L; Du C; Zhang X; Li J; Shi S
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust synchronization of chaotic systems subject to parameter uncertainties.
    Huang H; Feng G; Sun Y
    Chaos; 2009 Sep; 19(3):033128. PubMed ID: 19792008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust synchronization of master-slave chaotic systems using approximate model: An experimental study.
    Ahmed H; Salgado I; RĂ­os H
    ISA Trans; 2018 Feb; 73():141-146. PubMed ID: 29331431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-time synchronization of different dimensional chaotic systems with uncertain parameters and external disturbances.
    Li J; Zheng J
    Sci Rep; 2022 Sep; 12(1):15407. PubMed ID: 36104391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Adaptive-Robust Controller for Multi-State Synchronization of Chaotic Systems with Unknown and Time-Varying Delays and Its Application in Secure Communication.
    Kekha Javan AA; Shoeibi A; Zare A; Hosseini Izadi N; Jafari M; Alizadehsani R; Moridian P; Mosavi A; Acharya UR; Nahavandi S
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive synchronization of chaotic systems with hysteresis quantizer input.
    Asadollahi M; Ghiasi AR; Badamchizadeh MA
    ISA Trans; 2020 Mar; 98():137-148. PubMed ID: 31530374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems.
    Chen L; Chai Y; Wu R
    Chaos; 2011 Dec; 21(4):043107. PubMed ID: 22225344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Adaptive Finite-Time Sliding Mode Control for Fractional-Order Buck Converter Based on Riemann-Liouville Definition.
    Cai Z; Zeng Q
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances.
    Pashaei S; Badamchizadeh M
    ISA Trans; 2016 Jul; 63():39-48. PubMed ID: 27108564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive gain fuzzy sliding mode control for the synchronization of nonlinear chaotic gyros.
    Roopaei M; Zolghadri Jahromi M; Jafari S
    Chaos; 2009 Mar; 19(1):013125. PubMed ID: 19334989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PID controller for synchronization between master-slave neurons in fractional-order of neocortical network model.
    Ghasemi M; Foroutannia A; Nikdelfaz F
    J Theor Biol; 2023 Jan; 556():111311. PubMed ID: 36257351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observers-based event-triggered adaptive fuzzy backstepping synchronization of uncertain fractional order chaotic systems.
    Dong H; Cao J; Liu H
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems.
    Boukattaya M; Mezghani N; Damak T
    ISA Trans; 2018 Jun; 77():1-19. PubMed ID: 29699696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite learning sliding mode synchronization of chaotic fractional-order neural networks.
    Han Z; Li S; Liu H
    J Adv Res; 2020 Sep; 25():87-96. PubMed ID: 32922977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.