BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32493732)

  • 21. Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue.
    Alexander NS; Katayama K; Sun W; Salom D; Gulati S; Zhang J; Mogi M; Palczewski K; Jastrzebska B
    J Biol Chem; 2017 Jun; 292(26):10983-10997. PubMed ID: 28487362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium.
    Cook JD; Ng SY; Lloyd M; Eddington S; Sun H; Nathans J; Bok D; Radu RA; Travis GH
    J Biol Chem; 2017 Dec; 292(52):21407-21416. PubMed ID: 29109151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision.
    Kiser PD; Palczewski K
    J Biol Chem; 2021; 296():100072. PubMed ID: 33187985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells.
    Morshedian A; Kaylor JJ; Ng SY; Tsan A; Frederiksen R; Xu T; Yuan L; Sampath AP; Radu RA; Fain GL; Travis GH
    Neuron; 2019 Jun; 102(6):1172-1183.e5. PubMed ID: 31056353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prolonged Melanopsin-based Photoresponses Depend in Part on RPE65 and Cellular Retinaldehyde-binding Protein (CRALBP).
    Harrison KR; Reifler AN; Chervenak AP; Wong KY
    Curr Eye Res; 2021 Apr; 46(4):515-523. PubMed ID: 32841098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual cycle in the mammalian eye. Retinoid-binding proteins and the distribution of 11-cis retinoids.
    Bridges CD; Alvarez RA; Fong SL; Gonzalez-Fernandez F; Lam DM; Liou GI
    Vision Res; 1984; 24(11):1581-94. PubMed ID: 6543481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificity of the chromophore-binding site in human cone opsins.
    Katayama K; Gulati S; Ortega JT; Alexander NS; Sun W; Shenouda MM; Palczewski K; Jastrzebska B
    J Biol Chem; 2019 Apr; 294(15):6082-6093. PubMed ID: 30770468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of retinal photoisomerase in the visual cycle of the honeybee.
    Smith WC; Goldsmith TH
    J Gen Physiol; 1991 Jan; 97(1):143-65. PubMed ID: 2007885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal.
    Zhang H; Fan J; Li S; Karan S; Rohrer B; Palczewski K; Frederick JM; Crouch RK; Baehr W
    J Neurosci; 2008 Apr; 28(15):4008-14. PubMed ID: 18400900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments.
    Li S; Sato K; Gordon WC; Sendtner M; Bazan NG; Jin M
    J Biol Chem; 2018 Sep; 293(39):15256-15268. PubMed ID: 30115683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A human opsin-related gene that encodes a retinaldehyde-binding protein.
    Shen D; Jiang M; Hao W; Tao L; Salazar M; Fong HK
    Biochemistry; 1994 Nov; 33(44):13117-25. PubMed ID: 7947717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina.
    Fleisch VC; Schonthaler HB; von Lintig J; Neuhauss SC
    J Neurosci; 2008 Aug; 28(33):8208-16. PubMed ID: 18701683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominant role for pigment epithelial CRALBP in supplying visual chromophore to photoreceptors.
    Bassetto M; Kolesnikov AV; Lewandowski D; Kiser JZ; Halabi M; Einstein DE; Choi EH; Palczewski K; Kefalov VJ; Kiser PD
    Cell Rep; 2024 May; 43(5):114143. PubMed ID: 38676924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Muller-CRALBP in cone vision.
    Collery R; McLoughlin S; Vendrell V; Finnegan J; Crabb JW; Saari JC; Kennedy BN
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3812-20. PubMed ID: 18502992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible Photoreaction of a Retinal Photoisomerase, Retinal G-Protein-Coupled Receptor RGR.
    Morimoto N; Nagata T; Inoue K
    Biochemistry; 2023 May; 62(9):1429-1432. PubMed ID: 37057907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The vitamin A transporter STRA6 adjusts the stoichiometry of chromophore and opsins in visual pigment synthesis and recycling.
    Ramkumar S; Parmar VM; Samuels I; Berger NA; Jastrzebska B; von Lintig J
    Hum Mol Genet; 2022 Feb; 31(4):548-560. PubMed ID: 34508587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors.
    Jin M; Li S; Nusinowitz S; Lloyd M; Hu J; Radu RA; Bok D; Travis GH
    J Neurosci; 2009 Feb; 29(5):1486-95. PubMed ID: 19193895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinoid cycles in the cone-dominated chicken retina.
    Trevino SG; Villazana-Espinoza ET; Muniz A; Tsin AT
    J Exp Biol; 2005 Nov; 208(Pt 21):4151-7. PubMed ID: 16244173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal-chitosan Conjugates Effectively Deliver Active Chromophores to Retinal Photoreceptor Cells in Blind Mice and Dogs.
    Gao S; Kahremany S; Zhang J; Jastrzebska B; Querubin J; Petersen-Jones SM; Palczewski K
    Mol Pharmacol; 2018 May; 93(5):438-452. PubMed ID: 29453250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.