BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32493940)

  • 1. Micelle-stabilized Olfactory Receptors for a Bioelectronic Nose Detecting Butter Flavors in Real Fermented Alcoholic Beverages.
    Shin N; Lee SH; Pham Ba VA; Park TH; Hong S
    Sci Rep; 2020 Jun; 10(1):9064. PubMed ID: 32493940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-like smelling of a rose scent using an olfactory receptor nanodisc-based bioelectronic nose.
    Lee M; Yang H; Kim D; Yang M; Park TH; Hong S
    Sci Rep; 2018 Sep; 8(1):13945. PubMed ID: 30224633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors.
    Son M; Kim D; Ko HJ; Hong S; Park TH
    Biosens Bioelectron; 2017 Jan; 87():901-907. PubMed ID: 27664409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectronic Nose Using Olfactory Receptor-Embedded Nanodiscs.
    Yang H; Lee M; Kim D; Hong S; Park TH
    Methods Mol Biol; 2018; 1820():239-249. PubMed ID: 29884950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectronic nose: Current status and perspectives.
    Wasilewski T; Gębicki J; Kamysz W
    Biosens Bioelectron; 2017 Jan; 87():480-494. PubMed ID: 27592240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance.
    Son M; Cho DG; Lim JH; Park J; Hong S; Ko HJ; Park TH
    Biosens Bioelectron; 2015 Dec; 74():199-206. PubMed ID: 26143459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction.
    Jin HJ; Lee SH; Kim TH; Park J; Song HS; Park TH; Hong S
    Biosens Bioelectron; 2012 May; 35(1):335-341. PubMed ID: 22475887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor.
    Lee SH; Jin HJ; Song HS; Hong S; Park TH
    J Biotechnol; 2012 Feb; 157(4):467-72. PubMed ID: 21945089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrical Nose Platform Using Odorant-Binding Protein as a Molecular Transporter Mimicking Human Mucosa for Direct Gas Sensing.
    Choi D; Lee SJ; Baek D; Kim SO; Shin J; Choi Y; Cho Y; Bang S; Park JY; Lee SH; Park TH; Hong S
    ACS Sens; 2022 Nov; 7(11):3399-3408. PubMed ID: 36350699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment.
    Son M; Park TH
    Biotechnol Adv; 2018; 36(2):371-379. PubMed ID: 29289691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications and Advances in Bioelectronic Noses for Odour Sensing.
    Dung TT; Oh Y; Choi SJ; Kim ID; Oh MK; Kim M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses.
    Yoon H; Lee SH; Kwon OS; Song HS; Oh EH; Park TH; Jang J
    Angew Chem Int Ed Engl; 2009; 48(15):2755-8. PubMed ID: 19274689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional expression of olfactory receptors using cell-free expression system for biomimetic sensors towards odorant detection.
    Chen F; Wang J; Du L; Zhang X; Zhang F; Chen W; Cai W; Wu C; Wang P
    Biosens Bioelectron; 2019 Apr; 130():382-388. PubMed ID: 30266424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl.
    Sengupta P; Chou JH; Bargmann CI
    Cell; 1996 Mar; 84(6):899-909. PubMed ID: 8601313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli.
    Sung JH; Ko HJ; Park TH
    Biosens Bioelectron; 2006 Apr; 21(10):1981-6. PubMed ID: 16297612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations.
    Taniguchi G; Uozumi T; Kiriyama K; Kamizaki T; Hirotsu T
    Sci Signal; 2014 Apr; 7(323):ra39. PubMed ID: 24782565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine.
    Lee SH; Lim JH; Park J; Hong S; Park TH
    Biosens Bioelectron; 2015 Sep; 71():179-185. PubMed ID: 25909337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in the development of olfactory-based bioelectronic chemosensors.
    Cave JW; Wickiser JK; Mitropoulos AN
    Biosens Bioelectron; 2019 Jan; 123():211-222. PubMed ID: 30201333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood.
    Lim JH; Park J; Oh EH; Ko HJ; Hong S; Park TH
    Adv Healthc Mater; 2014 Mar; 3(3):360-6. PubMed ID: 23868879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality.
    Park J; Lim JH; Jin HJ; Namgung S; Lee SH; Park TH; Hong S
    Analyst; 2012 Jul; 137(14):3249-54. PubMed ID: 22497005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.