These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 32494006)
1. Molecular architecture of the human 17S U2 snRNP. Zhang Z; Will CL; Bertram K; Dybkov O; Hartmuth K; Agafonov DE; Hofele R; Urlaub H; Kastner B; Lührmann R; Stark H Nature; 2020 Jul; 583(7815):310-313. PubMed ID: 32494006 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into branch site proofreading by human spliceosome. Zhang X; Zhan X; Bian T; Yang F; Li P; Lu Y; Xing Z; Fan R; Zhang QC; Shi Y Nat Struct Mol Biol; 2024 May; 31(5):835-845. PubMed ID: 38196034 [TBL] [Abstract][Full Text] [Related]
3. Structural insights into how Prp5 proofreads the pre-mRNA branch site. Zhang Z; Rigo N; Dybkov O; Fourmann JB; Will CL; Kumar V; Urlaub H; Stark H; Lührmann R Nature; 2021 Aug; 596(7871):296-300. PubMed ID: 34349264 [TBL] [Abstract][Full Text] [Related]
4. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. Talkish J; Igel H; Hunter O; Horner SW; Jeffery NN; Leach JR; Jenkins JL; Kielkopf CL; Ares M RNA; 2019 Aug; 25(8):1020-1037. PubMed ID: 31110137 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly. Yang F; Bian T; Zhan X; Chen Z; Xing Z; Larsen NA; Zhang X; Shi Y Nat Commun; 2023 Feb; 14(1):897. PubMed ID: 36797247 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of branch site recognition by the human spliceosome. Tholen J; Razew M; Weis F; Galej WP Science; 2022 Jan; 375(6576):50-57. PubMed ID: 34822310 [TBL] [Abstract][Full Text] [Related]
7. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. Krämer A; Grüter P; Gröning K; Kastner B J Cell Biol; 1999 Jun; 145(7):1355-68. PubMed ID: 10385517 [TBL] [Abstract][Full Text] [Related]
8. The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. Loerch S; Leach JR; Horner SW; Maji D; Jenkins JL; Pulvino MJ; Kielkopf CL J Biol Chem; 2019 Feb; 294(8):2892-2902. PubMed ID: 30567737 [TBL] [Abstract][Full Text] [Related]
9. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Tang Q; Rodriguez-Santiago S; Wang J; Pu J; Yuste A; Gupta V; Moldón A; Xu YZ; Query CC Genes Dev; 2016 Dec; 30(24):2710-2723. PubMed ID: 28087715 [TBL] [Abstract][Full Text] [Related]
10. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Liang WW; Cheng SC Genes Dev; 2015 Jan; 29(1):81-93. PubMed ID: 25561497 [TBL] [Abstract][Full Text] [Related]
11. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Crisci A; Raleff F; Bagdiul I; Raabe M; Urlaub H; Rain JC; Krämer A Nucleic Acids Res; 2015 Dec; 43(21):10456-73. PubMed ID: 26420826 [TBL] [Abstract][Full Text] [Related]
12. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. Urabe VK; Stevers M; Ghosh AK; Jurica MS PLoS One; 2021; 16(10):e0258551. PubMed ID: 34648557 [TBL] [Abstract][Full Text] [Related]
13. Probing interactions between the U2 small nuclear ribonucleoprotein and the DEAD-box protein, Prp5. Abu Dayyeh BK; Quan TK; Castro M; Ruby SW J Biol Chem; 2002 Jun; 277(23):20221-33. PubMed ID: 11927574 [TBL] [Abstract][Full Text] [Related]
14. Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy. Golas MM; Sander B; Will CL; Lührmann R; Stark H Mol Cell; 2005 Mar; 17(6):869-83. PubMed ID: 15780942 [TBL] [Abstract][Full Text] [Related]
15. Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions. Behrens SE; Tyc K; Kastner B; Reichelt J; Lührmann R Mol Cell Biol; 1993 Jan; 13(1):307-19. PubMed ID: 8380223 [TBL] [Abstract][Full Text] [Related]
16. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. Will CL; Urlaub H; Achsel T; Gentzel M; Wilm M; Lührmann R EMBO J; 2002 Sep; 21(18):4978-88. PubMed ID: 12234937 [TBL] [Abstract][Full Text] [Related]
17. Evidence that the 60-kDa protein of 17S U2 small nuclear ribonucleoprotein is immunologically and functionally related to the yeast PRP9 splicing factor and is required for the efficient formation of prespliceosomes. Behrens SE; Galisson F; Legrain P; Lührmann R Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8229-33. PubMed ID: 8367487 [TBL] [Abstract][Full Text] [Related]
18. Prespliceosome structure provides insights into spliceosome assembly and regulation. Plaschka C; Lin PC; Charenton C; Nagai K Nature; 2018 Jul; 559(7714):419-422. PubMed ID: 29995849 [TBL] [Abstract][Full Text] [Related]
19. Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. Gamboa Lopez A; Allu SR; Mendez P; Chandrashekar Reddy G; Maul-Newby HM; Ghosh AK; Jurica MS ACS Chem Biol; 2021 Mar; 16(3):520-528. PubMed ID: 33617218 [TBL] [Abstract][Full Text] [Related]
20. Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint. Kao CY; Cao EC; Wai HL; Cheng SC Nucleic Acids Res; 2021 Sep; 49(17):9965-9977. PubMed ID: 34387687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]