BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32494026)

  • 1. RBMX is required for activation of ATR on repetitive DNAs to maintain genome stability.
    Zheng T; Zhou H; Li X; Peng D; Yang Y; Zeng Y; Liu H; Ren J; Zhao Y
    Cell Death Differ; 2020 Nov; 27(11):3162-3176. PubMed ID: 32494026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human CTC1 promotes TopBP1 stability and CHK1 phosphorylation in response to telomere dysfunction and global replication stress.
    Ackerson SM; Gable CI; Stewart JA
    Cell Cycle; 2020 Dec; 19(24):3491-3507. PubMed ID: 33269665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling.
    Choi JH; Lindsey-Boltz LA; Kemp M; Mason AC; Wold MS; Sancar A
    Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13660-5. PubMed ID: 20616048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RPA-coated single-stranded DNA promotes the ETAA1-dependent activation of ATR.
    Lyu K; Kumagai A; Dunphy WG
    Cell Cycle; 2019 Apr; 18(8):898-913. PubMed ID: 30975033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATR activation is regulated by dimerization of ATR activating proteins.
    Thada V; Cortez D
    J Biol Chem; 2021; 296():100455. PubMed ID: 33636182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of TopBP1, a canonical ATR/Chk1 activator, paradoxically hinders ATR/Chk1 activation in cancer.
    Liu K; Graves JD; Lin FT; Lin WC
    J Biol Chem; 2021; 296():100382. PubMed ID: 33556369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the ATR kinase by the RPA-binding protein ETAA1.
    Haahr P; Hoffmann S; Tollenaere MA; Ho T; Toledo LI; Mann M; Bekker-Jensen S; Räschle M; Mailand N
    Nat Cell Biol; 2016 Nov; 18(11):1196-1207. PubMed ID: 27723717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATRIP Deacetylation by SIRT2 Drives ATR Checkpoint Activation by Promoting Binding to RPA-ssDNA.
    Zhang H; Head PE; Daddacha W; Park SH; Li X; Pan Y; Madden MZ; Duong DM; Xie M; Yu B; Warren MD; Liu EA; Dhere VR; Li C; Pradilla I; Torres MA; Wang Y; Dynan WS; Doetsch PW; Deng X; Seyfried NT; Gius D; Yu DS
    Cell Rep; 2016 Feb; 14(6):1435-1447. PubMed ID: 26854234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage.
    Ohashi E; Takeishi Y; Ueda S; Tsurimoto T
    DNA Repair (Amst); 2014 Sep; 21():1-11. PubMed ID: 25091155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1.
    Shiotani B; Nguyen HD; Håkansson P; Maréchal A; Tse A; Tahara H; Zou L
    Cell Rep; 2013 May; 3(5):1651-62. PubMed ID: 23684611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATR autophosphorylation as a molecular switch for checkpoint activation.
    Liu S; Shiotani B; Lahiri M; Maréchal A; Tse A; Leung CC; Glover JN; Yang XH; Zou L
    Mol Cell; 2011 Jul; 43(2):192-202. PubMed ID: 21777809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ETAA1 acts at stalled replication forks to maintain genome integrity.
    Bass TE; Luzwick JW; Kavanaugh G; Carroll C; Dungrawala H; Glick GG; Feldkamp MD; Putney R; Chazin WJ; Cortez D
    Nat Cell Biol; 2016 Nov; 18(11):1185-1195. PubMed ID: 27723720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treacle and TOPBP1 control replication stress response in the nucleolus.
    Velichko AK; Ovsyannikova N; Petrova NV; Luzhin AV; Vorobjeva M; Gavrikov AS; Mishin AS; Kireev II; Razin SV; Kantidze OL
    J Cell Biol; 2021 Aug; 220(8):. PubMed ID: 34100862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.
    Zou L; Elledge SJ
    Science; 2003 Jun; 300(5625):1542-8. PubMed ID: 12791985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry.
    Maréchal A; Li JM; Ji XY; Wu CS; Yazinski SA; Nguyen HD; Liu S; Jiménez AE; Jin J; Zou L
    Mol Cell; 2014 Jan; 53(2):235-246. PubMed ID: 24332808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STAT-5 Regulates Transcription of the Topoisomerase IIβ-Binding Protein 1 (TopBP1) Gene To Activate the ATR Pathway and Promote Human Papillomavirus Replication.
    Hong S; Cheng S; Iovane A; Laimins LA
    mBio; 2015 Dec; 6(6):e02006-15. PubMed ID: 26695634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling.
    Lindsey-Boltz LA; Kemp MG; Capp C; Sancar A
    Cell Cycle; 2015; 14(1):99-108. PubMed ID: 25602520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative phosphoproteomics reveals mitotic function of the ATR activator ETAA1.
    Bass TE; Cortez D
    J Cell Biol; 2019 Apr; 218(4):1235-1249. PubMed ID: 30755469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of the BRCA1 C terminus (BRCT) repeat inhibitor of hTERT (BRIT1) protein coordinates TopBP1 protein recruitment and amplifies ataxia telangiectasia-mutated and Rad3-related (ATR) Signaling.
    Zhang B; Wang E; Dai H; Shen J; Hsieh HJ; Lu X; Peng G
    J Biol Chem; 2014 Dec; 289(49):34284-95. PubMed ID: 25301947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CK2 kinase-mediated PHF8 phosphorylation controls TopBP1 stability to regulate DNA replication.
    Feng H; Lu J; Song X; Thongkum A; Zhang F; Lou L; Reizes O; Almasan A; Gong Z
    Nucleic Acids Res; 2020 Nov; 48(19):10940-10952. PubMed ID: 33010150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.