These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 32494077)

  • 21. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent-Free Fabrication of Flexible and Robust Superhydrophobic Composite Films with Hierarchical Micro/Nanostructures and Durable Self-Cleaning Functionality.
    Liu S; Zhang X; Seeger S
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44691-44699. PubMed ID: 31630521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.
    Lu Y; Sathasivam S; Song J; Crick CR; Carmalt CJ; Parkin IP
    Science; 2015 Mar; 347(6226):1132-5. PubMed ID: 25745169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Durable and Flexible Hydrophobic Surface with a Micropatterned Composite Metal-Polymer Structure.
    Li M; Chen Y; Luo W; Cheng X
    Langmuir; 2021 May; 37(19):5838-5845. PubMed ID: 33904748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Robust Biomimetic Superhydrophobic Coating with Superior Mechanical Durability and Chemical Stability for Inner Pipeline Protection.
    Zang X; Bian J; Ni Y; Zheng W; Zhu T; Chen Z; Cao X; Huang J; Lai Y; Lin Z
    Adv Sci (Weinh); 2024 Mar; 11(12):e2305839. PubMed ID: 38225713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transparent Superhydrophobic and Self-Cleaning Coating.
    Zhang B; Xue X; Zhao L; Hou B
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of Robust, Anti-reflective, Transparent Superhydrophobic Coatings with a Micropatterned Multilayer Structure.
    Luo W; Xu J; Li G; Niu G; Ng KW; Wang F; Li M
    Langmuir; 2022 Jun; 38(23):7129-7136. PubMed ID: 35658446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.
    Goswami D; Medda SK; De G
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of Bacteria- and Blood-Repellent Superhydrophobic Polyurethane Sponge Materials.
    Ozkan E; Mondal A; Singha P; Douglass M; Hopkins SP; Devine R; Garren M; Manuel J; Warnock J; Handa H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51160-51173. PubMed ID: 33143413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
    Dong S; Wang Z; Wang Y; Bai X; Fu YQ; Guo B; Tan C; Zhang J; Hu P
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2174-2184. PubMed ID: 29265800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molding processed multi-layered and multi-functional nanocomposites with high structural ability, electrical conductivity and durable superhydrophobicity.
    Wu B; Peng C; Hu Y; Xing S; Jiang D; Yang J; Lyu J; He Y
    Nanoscale; 2018 Nov; 10(42):19916-19926. PubMed ID: 30346018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superhydrophobicity for antifouling microfluidic surfaces.
    Shirtcliffe NJ; Roach P
    Methods Mol Biol; 2013; 949():269-81. PubMed ID: 23329449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic Blood-Repellent Surfaces.
    Jokinen V; Kankuri E; Hoshian S; Franssila S; Ras RHA
    Adv Mater; 2018 Jun; 30(24):e1705104. PubMed ID: 29465772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions.
    Yin L; Zhu L; Wang Q; Ding J; Chen Q
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1254-60. PubMed ID: 21443252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porosity-induced mechanically robust superhydrophobicity by the sintering and silanization of hydrophilic porous diatomaceous earth.
    Nguyen HH; Tieu AK; Tran BH; Wan S; Zhu H; Pham ST
    J Colloid Interface Sci; 2021 May; 589():242-251. PubMed ID: 33460855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.
    Hwang GB; Page K; Patir A; Nair SP; Allan E; Parkin IP
    ACS Nano; 2018 Jun; 12(6):6050-6058. PubMed ID: 29792802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates.
    Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Nano Lett; 2013 Apr; 13(4):1793-9. PubMed ID: 23464578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.